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Abstract

This study presents a GIS-based approach to efficiently assess sinkhole susceptibility based on their morphological 
and contextual attributes derived from GIS and imagery data. Using a 14-km2 karst area in Nixa, Missouri as the study 
area, we first applied a sequence of GIS operations to extract sinks (i.e., topographic depressions), from bare-ground 
digital terrain models. We then derived three types of sink attributes from various GIS and imagery data, including four 
morphological attributes related to sink size, shape, depth, and terrain ruggedness; three imagery attributes denoting 
the impervious surface percentage, vegetation growth condition, and seasonal water conditions of sinks; and seven 
contextual attributes related to land use, population density, neighborhood sink density, hydrological flow, groundwater 
yield, bedrock depth, and historical sinkhole records. Sinks were ranked by each of the 14 attributes and assigned 
corresponding susceptibility scores, then combined by specified weights. The results identified high-priority sinkholes 
for mitigation activities or for further field-based inspection. The proposed computerized approach for sinkhole suscep-
tibility ranking can be effectively used as a first-stage sinkhole examination to maximize the use of limited resources for 
further comprehensive investigation.

Introduction
Sinkholes are common geologic phenomena in karst landscapes where the dominant geological mechanism is the 

dissolution of soluble rocks, mostly carbonates, rather than mechanical erosion (Gutiérrez et al., 2014). Sinkholes are 
usually circular to ellipsoidal funnel-shaped depressions on the land surface; the size can be from several centimeters 
to hundreds of meters, and the depth can be from a few meters to tens of meters (Gutiérrez et al., 2008; Zisman, 2008; 
Parise, 2010). 

While the development of sinkholes involves complex interaction of soil, rock, and groundwater that is unique for 
each site, two types of sinkholes can be distinguished, including solution sinkholes and subsidence sinkholes (Guti-
érrez et al., 2008). Solution sinkholes are created by differential dissolution and lowering of the ground surface where 
soluble rocks are exposed at or near the surface. Subsidence sinkholes are formed by subsurface dissolution and 
downward gravitational movement of the cover materials (Gutiérrez et al., 2014).

Subsidence sinkholes can be classified on the basis of the affected materials and the formation processes (Guti-
érrez et al., 2008, 2014). The affected materials may include soil cover, non-karst caprock, and karst bedrock; and 
the formation processes may include collapse, sagging, and suffosion. When the creation of a sinkhole involves more 
than one material or process, the sinkhole can be described with the dominant material and process followed by the 
secondary one (e.g., cover sagging and suffosion sinkholes, which are the common type of sinkholes in the study area 
of this research). 

Sinkhole subsidence can cause severe damage to roads and buildings. They also pose threats to human beings and 
livestock. Assessing sinkhole risk and the potential hazard is critical for hazard mitigation and management (Parise, 
2015a; Parise et al., 2015). Hazard analysis can be broadly classified into quantitative, qualitative, and semi-quantita-
tive methods (Lee and Jones, 2004; De León and Carlos, 2006; Van Westen, 2013). The quantitative method aims to 
quantify the hazard probability or predict losses by deriving numerical expressions of the relationships between hazard 
parameters and relevant variables. Statistical analysis, such as multiple regression analysis and discriminant analysis, 
are often applied to build relationship models (Dai et al., 2002). Examples of quantitative analysis includes the studies 
by Komac (2006), Molina et al. (2010), Sarkar et al. (2010), and Schmidt et al. (2011).

The qualitative method adopts a heuristic approach to estimate potential hazard from relevant factors based on 
the knowledge and experience of the experts. The method often includes the use of index maps and logical analytical 
models (Chalkias et al., 2016) and describes hazard risk and vulnerability in qualitative terms, such as high, medium, 
and low (De León and Carlos, 2006). Examples of qualitative analysis include the studies by Barredo et al. (2000), Van 
Westen et al. (2003), and Abella and Van Westen (2008).

The semi-quantitative method hazard analysis estimates potential hazard by converting hazard variables into in-
dices and combining them based on the weights determined by expert judgement (Nsengiyumva et al., 2018). The  
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combined hazard values may be further divided into different numbers of classes to be used for different purposes 
(Abella and Van Westen, 2008). This method often requires varied degrees of grouping, standardizing, indexing, and 
weighting for input variables. Example of semi-quantitative analysis include the studies by Peduzzi et al. (2005, 2009), 
Abella and vanWesten (2007), Wati et al. (2010), Feizizadeh and Blaschke (2014), Chalkias et al. (2014, 2016), and 
Nsengiyumva et al. (2018).

As this study adopts a semi-quantitative hazard analysis method, the advantages and limitations of this method are 
discussed in more detail. The main advantage of the semi-quantitative method is that it can reasonably rely on existing 
datasets and does not require costly field data as needed for the quantitative method (Anderson, 2013; Nsengiyumva, 
2018). Furthermore, by using the grouping and weighting approach, qualitative and categorical data can be convenient-
ly incorporated and combined with quantitative information.

One problem with the semi-quantitative method is the high degree of simplification in grouping and indexing proce-
dures (Dai et al., 2002). Another limitation is the subjectivity of weightings and the reproducibility of results (Anderson, 
2013). Specifically, since the determination of variable weights relies on expert knowledge, it is difficult to test the rela-
tive efficacy of one expert’s weightings over the other’s, and the chosen weightings would have limited reproducibility. 

A major difference between this study and other semi-quantitative hazard studies is that this study explicitly consid-
ers the quality of the spatial datasets for deriving hazard variables in determining suitable variable weights, in addition 
to taking hazard implication of the variables into account. Specifically, as our hazard variables are all derived from GIS 
and imagery data, the precision/quality of spatial data plays an important role in the reliability of the derived variables 
for predicting hazard. While past semi-quantitative studies often only consider hazard implication of variables in deter-
mining their weights, this study contributes to the field of hazard analysis by explicitly accounting for spatial data quality 
in the weighting procedures.

It is worth noting that the terms susceptibility assessment and hazard assessment may be explicitly differentiated. 
Specifically, susceptibility assessment indicates the relative probability of sinkhole incidence without referring to any 
time interval, while hazard assessment provides a quantitative measure of such probability within a time interval (Guti-
érrez et al., 2008b; Galve et al., 2009a). In other words, the generic concept of susceptibility describes the potential 
that a sinkhole incidence may occur in a certain area in an infinite time interval (Taheri et al., 2015; Ciotolia et al., 2016). 
As this study does not analyze sinkhole data of different time intervals, we will use the term susceptibility assessment 
instead of hazard assessment for the rest of the article.

Traditionally sinkholes are identified through field-based investigation by probing/boring activities (Zisman, 2001; 
Bullock and Dillman, 2003; Del Prete et al., 2010; Festa et al., 2012), area reconnaissance (Thomas and Roth, 1999) 
and geophysical applications (Krawczyk et al., 2012; Kaufmann, 2014). Large-scale sinkhole mapping may be accom-
plished by examining existing topographic maps or geologic maps and digitizing geologic features (Applegate, 2003; 
Gutiérrez et al., 2008; Galve et al.; 2009b). However, the results may lack the desired precision due to low resolution of 
the maps (Brinkmann et al., 2008; Basso et al., 2013). The reliability of this approach that digitizes features from existing 
maps also depends on the drafter’s experience (Angel et al., 2004). 

The advancement of digital photogrammetry and laser altimetry, particularly the improved data resolution, has in-
creased the capability of sinkhole detection (Atzori et al., 2015; Intrieri et al., 2015; Al-Halbouni et al., 2017; Zumpano et 
al., 2019). The conventional approach is to delineate sinkholes through visual interpretation of digital imagery (Reese 
and Kochanov, 2003; Seale et al., 2008), while many studies have explored automatic approaches for extracting sink-
holes or modeling sinkhole susceptibility (Zhu et al., 2014; Wall et al., 2017; Zumpano et al., 2019). For example, Stocks 
(2007) used an object-based approach to classify pixels of digital photos as sinkholes, by first grouping image pixels 
into meaningful objects of different hierarchies based on similar pixel statistics, and then classifying hierarchical objects 
into different land classes through iterated training processes. Galve et al. (2008) used a digital image classification 
approach to classify areas of different sinkhole susceptibility based on 27 geomorphologic, hydrogeological, and hu-
man factors derived from existing GIS data. Lamelas et al. (2008) used logistic regression to map sinkhole probability 
based on a variety of lithological, stratigraphic, geomorphological, and hydrological variables, as well as anthropogenic 
variables relevant to locations of man-made facilities. Siart et al. (2009) extracted sinkholes based on spectral values 
of satellite images; they then refined the results based on pre-defined size, slope, and elevation criteria for sinkholes.

Since the study area is situated in a hilly and vegetated karst terrain where field investigation is particularly labor-in-
tensive and time-consuming, we propose a computerized assessment approach suitable for this type of landscape, and 
focus on sinkhole attributes that can be efficiently derived from common GIS and imagery data, including digital terrain 
models (DTMs), digital aerial photos, land parcel data, census population data, and well data. Specifically, four of the 
adopted sinkhole attributes are suitable for a hilly and vegetated landscape, including a terrain ruggedness index, a 
hydrological flow accumulation statistic, the Normalized Difference Vegetation Index (NDVI), and the seasonal surface 
water condition. 
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In addition to presenting a computerized assessment approach suitable for a hilly, vegetated karst terrain, and 
adopting sinkhole attributes that can be conveniently derived from common GIS and imagery data, this study contrib-
utes to sinkhole research by proposing three sinkhole attributes as hazard indicators that have not been used in past 
sinkhole susceptibility analyses. The three pioneering attributes are the terrain ruggedness index, the maximum hydro-
logical flow accumulation, and the NDVI.

Study Area 
An area approximately 14 km2 (3.5 km by 4 km) in the northwest suburb of the city of Nixa, Missouri (Fig. 1), is used 

to demonstrate the methodology for sinkhole extraction and hazard assessment. The Nixa area is situated in the phys-
iographic region of Springfield-Salem Plateaus that has a well-developed karst topography. The karst plateau is under-
lain by coarse-grained fossiliferous Mississippian-aged limestone and cherty limestone. Situated in a humid subtropical 
climate with overlying surficial soil up to 12-meter thick (Stohr et al., 1981), the region has hundreds of caves, springs, 
and sinkholes, with cover sagging and suffosion types of sinkholes most common. 

The Nixa area sits on the drainage divide between the Finley River and the James River (Fig. 1). Flooding after 
heavy rain makes this area susceptible to erosion. Porter and Thomson (1975) documented a total of 266 sinkholes in 
the Nixa karst area. The current sinkhole database at Missouri Department of Natural Resources has approximately 
300 sinkhole records, but only about three dozen are collapse sinkholes (Kaufmann, 2007; Gouzie and Pendergrass, 
2009). 

Data Source
Data used in this study include DTMs, digital aerial photos, land use, building footprints, population, wells, and 

historical sinkhole data for the Nixa area.  Firstly, we obtained bare-ground DTMs of one-meter spatial resolution from 
the U.S. Geological Survey (USGS) center at Rolla. The DTMs are originally derived from LiDAR remote-sensing data 
that were collect in 2006 and have been processed to remove vegetation and building points. The DTMs have a verti-
cal accuracy of about 30 cm and a horizontal accuracy of about 50 cm. The DTMs will be used to extract sinks and to 
calculate the terrain ruggedness index and the hydrological flow accumulation for indicating potential sinkhole hazard.

We downloaded digital aerial photos of 3-band, 0.6-m resolution, taken during the winter of 2008 from the Missouri 
Spatial Data Information Service website (http://www.msdis.missouri.edu/). The 2008 photos will be used to derive 
seasonal water conditions during the winter and to compute impervious surface percentages, which will be used to 
infer human accessibility. We also downloaded digital aerial photos of four-band, one-meter resolution, taken during 

Figure 1. The Nixa study area (red rectangle) in the physiographic region of Springfield-Salem Plateaus (yellow polygon), with a hill-shaded 
relief map showing the topography (middle map), and a drainage map showing documented sinkholes in the area (right map).
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the summer of 2009 from USGS The National Map website (http://nationalmap.gov). The 2009 photos will be used to 
derive seasonal water conditions during the summer and to calculate a vegetation growth index for indicating potential 
sinkhole hazard. 

We obtained parcel zoning data from the Department of Planning and Development at Christian County, Missouri. 
The zoning data will be used to determine land uses for the areas where sinks are located. We downloaded building 
footprints data from ESRI ArcGIS Online (https://www.arcgis.com). The building footprints data, originally generated by 
Microsoft, will be used to refine/redistribute census block-level population from 2010 block-level population data from 
the U.S. Census Bureau American FactFinder website (https://factfinder.census.gov). The population data will be used 
to derive population density for the neighborhood area of sinks for indicating human exposure to potential sinkhole 
hazard. We further downloaded wells data and historical sinkhole data from Missouri Spatial Data Information Service. 
The wells data will be used to calculate a sinkhole risk measure based on the well yield (gallons per minute), and the 
historical sinkhole data will be used to calculate a sinkhole density measure to infer future hazard potential.

Analysis Methods
We used the per field classification technique in remote sensing (Wu et al., 2009) to derive attributes for sink poly-

gons. The per field technique is commonly used for land use or land cover classification, in which areas within pre-de-
termined polygonal fields are considered homogeneous and are classified based on relevant attributes of the fields 
(Aplin et al., 1999; Geneletti and Gorte, 2003). In this study, we used sink-depth isolines or their buffered areas as field 
boundaries for calculating the morphological, imagery, and contextual statistics for sinks.

In the following sections, we first describe the approach used for extracting sinks from DTMs using common GIS 
tools. We then explain the methods for deriving three types of sink attributes (Table 1) for sinkhole susceptibility assess-
ment. Note that some of attributes are considered important in the sense of indicating human vulnerability to potential 
sinkhole incidences, instead of indicating the probability of geological activities of sinkholes (e.g., the rapid movement 
of soil cover).

Extracting Sinks from Bare-Ground DTMs 
A sequence of GIS tools in ArcGIS software 10.4 is used to extract topographic depressions from the bare-ground 

DTMs. Specifically, we first filled the hydrological depressions on a DTM clipped to the study area. All depressions, re-
gardless of depth, were filled in this process. Understanding that not applying a depth threshold at this stage of analysis 
would result in large amount of small and possibly artificial sinks being derived in later processes (Zhu et al., 2014; Qiu 
and Wu, 2017), we intended to later examine the size-distribution of the derived hydrological sinks to gain insight of the 
topography. The information will help decision making in selecting a suitable size threshold for filtering out reasonable 
sinks. 

After creating the sink-filled DTM, we subtracted the smooth-surface DTM with the original bare-ground DTM to 
derive a sink-depth DTM (Figure 2). Sink-depth isolines of 50 cm were then computed from the sink-depth DTM, con-
sidering that the original DTM has a vertical accuracy of about 30 cm and the equivalent contour interval would be ap-
proximately 50 cm (USDA, 2011). Lastly, we converted the 50 cm sink-depth isolines to polygons, so they can be used 
as the field boundaries for deriving sink attributes. A total of 830 sinks were extracted for the study area. 

We noted that there is one particularly large and irregularly-shaped sink in the north-east quadrangle of the study 

Table 1. The three types of sink attributes and the used methods to assess the attributes.
Types Attributes Assessment Methods

Morphological 1.  Size
2.  Shape complexity
3.  Depth to diameter ratio
4.  Terrain ruggedness

1.  Larger size  higher sinkhole susceptibility
2.  Higher shape complexity  higher sinkhole susceptibility
3.  Larger depth/diameter  higher sinkhole susceptibility
4.  More rugged  higher sinkhole susceptibility

Imagery 1.  Impervious surface %
2.  NDVI
3.  Seasonal water condition

1.  Higher impervious surface %  higher sinkhole susceptibility
2.  Lower NDVI  higher sinkhole susceptibility
3.  Impounded water   lower sinkhole susceptibility

Contextual 1.  Land use
2.  Population density
3.  Hydrological flow accumulation
4.  Sink density
5.  Sinkhole record density
6.  Well yield
7.  Bedrock depth

1.  Commercial & residential land uses  higher sinkhole susceptibility
2.  Higher population density  higher sinkhole susceptibility
3.  Higher hydrological flow  higher sinkhole susceptibility
4.  Higher sink density  higher sinkhole susceptibility
5.  Higher sinkhole record density  higher sinkhole susceptibility
6.  Higher well yield  higher sinkhole susceptibility
7.  Deeper bedrock  lower sinkhole susceptibility
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area that contains varied landscape (Fig. 2). Although some part of this sink may be formed by a combination of geo-
logical and human factors, this outlier sink is excluded for further assessment so that we can focus on other sinks for 
classifying and comparing their attributes. 

We also noted that a large portion of sinks are quite small (237 out of the 830 sinks are less than 1 m2). Understand-
ing that the sinks were extracted from 1 m DTMs, and the minimum data resolution for detecting a landscape object 
should be less than one-half the size of the feature (Jensen, 2005), we regard sinks smaller than 3 m2 unreliable and 
possibly artifacts. Therefore, a total of 362 small sinks were removed and the remaining 468 sinks were retained for 
continued assessment. An initial examination of the sinks on aerial photos indicate some sinks appear to be man-made 
detention ponds in residential neighborhood areas (Fig. 2). This issue will be addressed later in our analysis.
Assessing Sinkhole Susceptibility based on Sinks Morphological Attributes 

We first assessed sinkhole susceptibility relevant to sink area/size (Fig. 3A). As sinkholes develop and evolve, 
they are likely to expand in size and in depth until the underground crevices and voids are clogged and the overlying 
materials stop moving downward (Gouzie and Pendergrass, 2009; Parise, 2010; Gutierrez et al., 2014). Based on this 
sinkhole development process, smaller sinkholes seem to have more potential for continued growth and threatening 
human activities and properties, while large sinkholes may have evolved to a mature stage of development, and there-
fore, pose little risk to humans. Nevertheless, there is no direct relationship between sinkhole size and its potential for 
further development. In addition, we can never be certain what stage of development a sinkhole is at present. As a 
result, sinkhole susceptibility is assessed based on potential human exposure corresponding to the size of a sink. From 
a management point of view, larger sinks likely require more manual efforts for mitigation actions. For these reasons, 
higher susceptibility scores are assigned to sinks of larger size, which will be described in detail later.

We noticed that a few sinks in the south-east quadrangle of the study area have considerably jagged and elongated 
shapes (Fig. 2B). A close examination of current and historical aerial photos indicates that these irregularly-shaped 
sinks are man-made roadside swales and subdivision detention basins. To filter out these man-made sinks, we applied 

Figure 2. A hill-shaded sink-depth DTM with 50 cm depth sink polygons (left), and corresponding aerial photos with large sink polygons 
displayed (right).
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a shape complexity index, calculated as the polygon perimeter divided by the square root of polygon area (Moser et al., 
2002). A more complex shape will have a higher shape complexity index. Man-made sinks have a shape index larger 
than 7.4, therefore, a threshold of 7.4 is applied to exclude a total of 18 man-made sinks. 

Some neighborhood detention ponds (e.g., sinks in the southwest and northeast corners of the study area) have 
relatively compact shapes. In contrast to jagged, elongated detention basins, these compact-shaped detention ponds 
may possibly have a geological origin but have been utilized for storm-water management purposes. For this reason, 
these compact-shaped detention ponds are retained for subsequent assessment. Mapping the remaining 450 sinks 
based on the shape complexity index (Fig. 3B), we noted that larger sinks tend to have more irregular shapes than 
smaller sinks. For sinkhole management purpose, sinks of more irregular shapes have boundaries harder to delineate 
in the field and would require more work for mitigation actions, e.g., putting up warning signs around the perimeter. 
For this reason, we consider sinks of more irregular shapes posing more risk to humans and would give them a higher 
sinkhole susceptibility score. 

Most sinkholes are depressions with gentle slopes and smoother morphology formed by the sagging or suffosion 
process; and sinkholes with steep sides formed by the collapse process are relatively uncommon (Troester et al., 1984; 
Denizman, 2003; Caramanna et al., 2007; BGS, 2017). Sinkhole morphology is mainly determined by the mechanical 
strength of the surface materials in which they form. For example, sinkholes formed in alluvial sediment will have higher 
slopes and greater depths than sinkholes formed in mud (Al-Halbouni et al., 2017). Margiotta et al. (2012) indicated that 
cover collapse sinkholes are often steep with a diameter/depth ratio from 1.5 to 3. As the collapse process is considered 
relatively dangerous due to the rapid movement of surface materials, a higher susceptibility score is assigned to sinks 
with a larger depth to diameter ratio. For the study area, we noted that sinks with a higher depth/diameter ratio tend to 
be smaller in size and more compact in shape (Fig. 3C).

We further examined the topography of sink surfaces. Considering that sink surface is affected by the underlying 
geological structure, the terrain conditions may inform recent raveling activities that can facilitate surface water trans-
port of soil down into cavities in underlying bedrock. As a result, sinks with a rougher surface are considered likely more 
geologically active than sinks with a smoother surface. 

We created cross-sectional profiles for sinks to examine their terrain conditions (Fig. 4, left), and further derived a 
terrain ruggedness index to quantify the surface disturbing degree (Fig. 4, right). Specifically, the standard deviation of 

Figure 3. Ranking of sinks based on size (A), shape complexity (B), and depth to diameter ratio (C), with histograms showing the distribu-
tions.
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elevation in a 3×3 m moving window was first computed as the local terrain ruggedness index (Ascione et al., 2008). 
The average terrain ruggedness index within each sink polygon was then calculated as an attribute. Observe that sinks 
with a high ranking of terrain ruggedness index also have a relatively rugged profile (Fig. 4).  

Some sinks (represented by 0.5 m depth isolines) appear to be congregations of two original sinks (Fig. 4). This phe-
nomenon happens when sinks grow and expand throughout the years and eventually connect with neighboring sinks 
to form a large one. Sink coalescence would have some effects on the terrain ruggedness measure. Specifically, the 
connecting ridge area of two neighboring sinkholes are generally broader and less disturbed/rugged than the sloping 
area. As a result, when two neighboring sinks are connected, the local terrain is likely to become smoother. The new 
terrain ruggedness index for the congregated sink would be approximately an average of the two original ones. 
Assessing Sinkhole Susceptibility based on Sinks Imagery Attributes 

Many sinks in the study area are traversed by roads (Fig. 2). Since roads provide human accessibility, sinks close 
to roads would pose more sinkhole risk than sinks away from roads. Accordingly, we derived impervious surface per-
centages for sinks to indicate the human exposure level (Qiu and Wu, 2017). A raster layer of impervious surface was 
first generated through remote sensing imagery classification from the 0.6 m resolution aerial photos. The percentage 
of impervious surface within a 100-meter buffer of sink polygons was then calculated for each sink (Fig. 5A). Sinks with 
a higher impervious surface measure ratio will be given a higher susceptibility score. 

Because sinks naturally accumulate water, there is often more vegetation growth around sinkholes than in sur-
rounding areas (Handfelt and Attwooll, 1988; Sowers, 1996; Gutiérrez et al., 2008).  And since vegetation stabilizes 
soil, sinkholes would be safer when there is denser vegetation nearby (Gutiérrez et al., 2008; Zhou and Beck, 2008). 
For example, because trees stabilize soil more effectively than grass does, sinks within woodlands pose less risk than 
those in grasslands. Also, grassland is more accessible to humans than woodland, which makes sinks located there 
potentially more unsafe to a greater number of passers-by.  In the same way, sinks located on barren land are poten-
tially more likely to cause the most problems. 

Accordingly, we calculated the NDVI index in order to gauge vegetation growth conditions.  The NDVI measures the 
chlorophyll pigment absorptions in the red band and the high reflectivity of plant materials in the near-infrared (NIR) 
band (ESRI, 2016).  Such values were interpreted as shown in Table 2 (Weier and Herring, 2000).  

Figure 4. Cross-sectional profiles for six sinks (left), and ranking of sinks based on terrain ruggedness with histograms showing the distri-
butions (right).
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We derived a NDVI raster layer from the one-meter, 
4-band, 2009 aerial photos. The average NDVI value with-
in each sink polygon was then calculated as its attribute 
(Fig. 5B). Sinks having a lower NDVI are considered hav-
ing higher sinkhole susceptibility.

Many sinks in the study area have impounded water 
that can be observed from aerial photos (Fig. 2). As water 

is a triggering mechanism for sinkhole incidence (Parise, 2010, 2015b; Kaufmann and Romanov, 2016), the surface 
water seasonal condition can inform potential sinkhole risk by showing whether the surface water can be easily flushed 
down into the bedrock or soil voids and how clogged the underground voids are (Qiu and Wu, 2017). 

Three types of surface water conditions can be observed for sinks in our study area: 
1.  Sinks with perennially impounded water, which may be considered as a relatively inactive sinkhole with sinkhole 

throat clogged; 
2.  Sinks with seasonal surface water, which may indicate water slowly drains down sinkhole throats that are not 

completely clogged; and 
3.  Sinks that are constantly dry, which may indicate that the surface water can quickly drain out from the sinkhole 

throat. 
A water-impounded sink may be a sagging or suffosion sinkhole that grows from top down, or a collapse sinkhole 

that grows from bottom up. In the latter case, surface water is temporarily retained due to an earlier collapse clogged 
the sinkhole throat. As the water-filled collapse sinkhole may continue to grow further, the growth becomes slower and 
the potential risk is reduced. 

In this study, we focused on the water retaining mechanism for sagging/suffosion sinkholes for susceptibility assess-
ment, since collapse sinkholes are relatively rare in the study area. Specifically, constantly dry sinks are considered 
posing the most potential sinkhole risk due to the constant transportation of water from surface to underground that 
expedites the dissolution process. In contrast, water-filled sinks have relatively inactive water flow and are considered 
posing less risk than (intermittently) dry sinks. From another point of view, the impounded surface water allows progres-
sive geologic activities (e.g., rapid soil/rock movements), to be easier to detect, and thus, makes the water-filled sinks 
more manageable. 

Figure 5. Ranking of sinks based on impervious surface percentage (A), NDVI (B), and seasonal water condition (C), with histograms 
showing the distributions.

Table 2. Interpretation of NDVI values.
Value Interpretation
 0.1 rock, sand, snow

0.2 – 0.3 shrubs, grassland

0.6 – 0.8 temperate and tropical rainforests
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To derive the seasonal water condition for sinks, we classified the water cover class from both the 2008 winter aerial 
photo and the 2009 summer aerial photo. As winter is the dry season (an average rainfall of 196 mm) and summer is 
the wet season (an average rainfall 299 mm) in Nixa, Missouri, the water cover classes from the two seasons were 
compared, and sinks were categorized as either constantly dry, intermittently dry, or constantly wet (Fig. 5C). 
Assessing Sinkhole Susceptibility based on Sinks Contextual Attributes 

What type of land use a sink is located has implications in human exposure to potential sinkhole incidence. For 
example, commercial land use usually has more human activities than other land uses; therefore, sinks located on 
commercial land use are considered to pose higher potential sinkhole risk. In contrast, sinks on agricultural or manu-
facturing land use often have the least traffic and thus present the least risk to humans. 

To assess sinkhole susceptibility based on land use, we used parcel data to infer land use information for sinks. Land 
parcels were categorized into four land use types, including commercial, agricultural/manufacturing, and two types of 
residential land use: rural and suburban (Fig. 6A). For the two residential land use, suburban residential is considered 
to have more human activities/traffic and, therefore sinks located on it would pose higher human threats. When a sink 
falls on more than one land use, the land use occupying more sink surface takes priority over others.

In addition to land use types, population density for the nearby area of sinks has implications in human exposure 
to potential sinkhole incidence. Therefore, sinks with higher population density are considered to pose more sinkhole 
threats to humans than sinks with lower population density.

We calculated the population density within a 400-meter buffer of sink polygon to infer neighborhood population 
density for sinks. The reason a 400-meter (0.25 miles, about 5-minute walk) buffer is used to calculate population den-
sity is that this distance is widely used as an acceptable walking distance in many studies (Atash, 1994; Krizek, 2003; 
McCormack et al., 2008). The calculation was performed in the following three steps: 

1.  Using the dasymetric mapping approach to redistribute block-level population to residential buildings, based on 
building footprints and land use data with predefined population ratios for different land uses (Fig. 6B).

2.  Calculating the total population within a 400-meter buffer of each sink polygon by summing the building popu-
lations within the buffer. 

3.  Calculating population density for the buffered area and assigning the measure to respective sinks.

Figure 6. Four types of parcel land use with a chart showing the number of sinks in each land use (A), redistributed census block popula-
tions based on land use types and building footprints (B), and ranking of sinks based on hydrological flow accumulation (C), with histograms 
showing the distributions.
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We further examined the hydrological flow for sinks to assess sinkhole susceptibility. Since sinks with larger accu-
mulated flows would have more water supply to facilitate the progressive geological process, they are considered to 
have higher risk than sinks with smaller accumulated flows. 

To calculate the accumulated flow for sinks, we first filled the hydrological depressions on a 10-m DTM resampled 
from the 1 m DTM to generate a smooth surface so that the subsequent flow direction calculation will be more accurate. 
A flow direction raster was then derived with the cells values representing one of the eight possible flow directions from 
the center cell to the neighboring cell with the steepest descent. A flow accumulation raster was further derived with 
the cell values representing the total number of upslope cells flowing into each downslope cell. Lastly, the maximum 
accumulated flow value within each sink polygon was calculated, which can be seen as the water catchment areas for 
the lowest point of the sink. 

We noted that sinks situated on hydrological drainages naturally have high flow accumulations (Fig. 6C). Sinks lo-
cated in the general downstream areas (the north) do not necessarily have larger flow accumulation than sinks located 
in upstream areas (the south), because the most important factor for determining a sink’s flow accumulation is whether 
the sinks is situated within a drainage valley, which depends on local topography around the sink. 

Another contextual attribute that this study incorporated for sinkhole susceptibility assessment is the density of 
neighboring sinks, since locations with a high density of sinks are prone to sinkhole incidence (Galve et al., 2009c). We 
calculated the density of neighboring sinks within a 400-m buffer of the sink of interest to indicate the degree of sinkhole 
susceptibility (Fig. 7A). There appears to be high density of sinks in the north-central area (shown as red).

Existing sinkhole records may provide insight to potential sinkhole risk. Using the sinkhole database compiled by the 
Division of Geology and Land Survey at Missouri Department of Natural Resources, we calculated a sinkhole-potential 
surface (Fig. 7B) based on the weighted density of sinkhole records. The weights are based on the reliability of the 
sinkhole records, considering those created from data sources of higher resolutions and/or have been verified by field 
visits more reliable and given higher weights. A sinkhole-potential measure was then calculated based on combined 
sinkhole-potential values within a 400-meter buffer of the sink.

Understanding that groundwater withdraw contributes to sinkhole risk, we calculated a well yield (gallons per minute) 
surface using the well yield (gallons per minute) information in the wells data (Fig. 7C). A sinkhole risk measure was 
then derived based on the total well yield within a 400-meter buffer of the sink.

Figure 7. Ranking of sinks based on 400-m-buffer sink density (A), interpolated sinkhole potential surface based on existing sinkhole re-
cords (B), and interpolated well-yield surface from wells data (C).
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Considering that the depth to bedrock has an effect on the probability of sinkhole collapse, we estimated the bedrock 
depth (Fig. 8A) based on descriptions and depth information of formations in the wells data. A bedrock depth surface 
was then interpolated from the bedrock depth data. Further, a sinkhole risk measure was calculated based on the max-
imum bedrock depth within a 100-meter buffer of the sink.
Combining all Sinks Attributes for Sinkhole Susceptibility Assessment

Lastly, all sink attributes were combined for susceptibility assessment. Each ratio variable of sink attributes was 
classified into nine ranges with each range of 50 sink records. Classifying sink attributes by broad range allows mini-
mizing the inherent uncertainty of sink attributes in denoting sinkhole susceptibility. Sinks in each range were assigned 
a corresponding susceptibility score from 1 to 9, with 9 being the most potentially dangerous or of highest priority for 
sinkhole management (Table 3). 

For categorical variables, including the seasonal water condition and land use types, a score between 2 and 8 was 
assigned based on the risk implication of the attribute. We did not use the score range of 1 to 9 as others have done in 
order to minimize the uncertainty and potential error in quantifying categorical variables. Specifically, using a smaller 
interval with a larger minimum and a smaller maximum will make categorical variables less influential to the overall 
susceptibility scores combined from all variables.

To identify high-priority sinkholes for sinkhole prevention and mitigation efforts, we combined susceptibility scores 
from each attribute through a weighting approach. In principle, the weight should be determined by how the attribute 
denotes the probability of sinkhole-causing property damage and human injury. Practically, the weight is decided based 
on the analysis objectives as well as the assessor’s opinions of what are considered important. In this study, higher 
weights are assigned to the attributes that we considered as important risk indicators, while lower weights are given to 
attributes that we considered less reliable due to spatial data precision (Table 4). Specifically, the following five criteria 
are utilized in assigning weights:

1.  Unless meeting the following criteria, all attributes are taken as moderate risk indicators and are assigned a 
neutral weight of 1;

2.  If the attribute is commonly used as sinkhole susceptibility indicator with solid theoretical support, it is given a 
weight of 2;

3.  The attribute of land use is given a weight of 4, considering that sinkhole management priority is usually given 
to the developed/developing urban areas, which are mainly commercial and residential land use.

Figure 8. Interpolated bedrock depth surface based on wells data (A), ranking of sinks based on the weighted susceptibility score from all 
attributes (B), and an interpolated surface of sinkhole susceptibility (C).
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4.  The attribute of seasonal water condition is 
given a weight of 0.5, considering that the sus-
ceptibility score for a corresponding category is 
relatively generalized and may be unreliable;
5.  The attribute of vegetation growth index is 
given a weight of 0.5, considering that vegetation 
would not have much stabilizing effects when 
surficial materials above bedrock are thick, and 
a sinkhole collapse will occur at some time re-
gardless of the vegetation cover.

Using the defined weight for each sink attri-
bute, we calculated the overall weighted sus-
ceptibility scores for sinks and ranked them by 
four ranges with similar number of sinks in each 
range (Fig. 8B). As the final, combined suscep-
tibility scores are interpreted in broad ranges, it 
is reasonable to mark sinks in higher ranks with 
higher priority for further investigation or preven-
tion management than sinks in lower ranks. It 
appears that high-susceptibility sinks cluster in 
the central part of the study area. Understand-
ing that many small sinks cannot be observed 
on maps, we interpolated a sinkhole susceptibil-
ity surface from the susceptibility scores based 
on the centroids of sink polygons (Fig. 8C). The 
interpolated susceptibility surface highlights the 
red risk zones of high sinkhole susceptibility. 
Those red areas are considered having high 
priority for further field-based geophysical inves-
tigation, as well as for conducting sinkhole pre-
vention and mitigation activities. Some sinkhole 
management strategies may include:
 • Minimizing new land development and con-

struction activities in the area;
 • Regularly monitoring the ground conditions 

for sinks in the area;
 • Educating/notifying land owners of the poten-

tial sinkholes in their properties.

Discussion 
This study presents a computerized ap-

proach for sinkhole susceptibility assessment 
based on sink attributes that can be efficiently 
derived from digital data of elevation, aerial pho-
tos, parcel land use/zoning, and census demo-
graphics. The advantage of this approach is that 
emergency managers and planners can use it 
to quickly identify high-priority sinkholes. The 
disadvantage of the approach is that it could not 
confirm the existence of sinkholes, because the 
assessment is based on sinkhole risk indicators 
and human vulnerability considerations. The ac-
tual geological activities underground can only 
be verified through geophysical investigation us-
ing ground penetrating radar (GPR). Neverthe-
less, from another point of view, results from this 

Table 3. Classification of sink attributes and the value ranges in each 
class.

Attributes

Classes
(Susceptibility 

Scores) Value Ranges
Size (square meters) 9

8
7
6
5
4
3
2
1

  5342 – 59648
  858 – 5341

177 – 857
  45 – 176
22 – 44
13 – 21
  8 – 12
6 – 7
3 – 5

Shape complexity 9
8
7
6
5
4
3
2
1

5.73 – 8.42
5.07 – 5.72
4.77 – 5.06
4.44 – 4.76
4.25 – 4.43
4.10 – 4.24
3.98 – 4.09
3.86 – 3.97
3.64 – 3.85

Depth to diameter ratio 9
8
7
6
5
4
3
2
1

0.53 – 0.78
0.44 – 0.52
0.37 – 0.43
0.28 – 0.36
0.20 – 0.27
0.14 – 0.19
0.10 – 0.13
0.07 – 0.09
0.02 – 0.06

Terrain ruggedness 9
8
7
6
5
4
3
2
1

0.167 – 1.585
0.125 – 0.166
0.105 – 0.124
0.084 – 0.104
0.072 – 0.083
0.060 – 0.071
0.049 – 0.059
0.037 – 0.048
0.008 – 0.036

Impervious surface (%) 9
8
7
6
5
4
3
2
1

16.5 – 56.9
11.6 – 16.4
  8.5 – 11.5
 6.3 – 8.4
 4.7 – 6.2
 3.4 – 4.6
 1.7 – 3.3
 0.6 – 1.6
 0.0 – 0.5

NDVI 9
8
7
6
5
4
3
2
1

  0.30 – 0.04
0.03 – 0.06
   0.07 – 0.19
   0.20 – 0.27
   0.28 – 0.33
   0.34 – 0.39
   0.40 – 0.43
   0.44 – 0.48
   0.49 – 0.61

Seasonal water condition 7
5
3

Constant dry
Intermittent

Constant wet



Journal of Cave and Karst Studies, March 2020 • 13

Qiu, Wu, and Chen

computerized approach can be used as an ini-
tial framework to prioritize limited resources for 
sinkhole investigation and mitigation (Zumpano 
et al., 2019). 

This study assessed sinkhole susceptibility 
based on fourteen sink attributes. The advan-
tage of the proposed attributes is that many of 
them are intended to be suitable for a hilly, vege-
tated karst terrain and are, therefore, applicable 
to areas of similar landscape. Furthermore, the 
proposed attributes can be conveniently derived 
from common GIS and imagery data without 
time-consuming data collection in the field. 

There are two potential disadvantages of us-
ing the proposed sink attributes for susceptibility 
assessment. The first is the inherent errors in 
data source and in computational analysis. Par-
ticularly, the resolutions of the DTMs and aerial 
photos, and the rigor of the procedures used to 
derive the attributes affect the accuracy of all the 
attributes. The second disadvantage of using 
these attributes for susceptibility assessment is 
the inherent uncertainty in the relevancy of the 
attributes denoting sinkhole risk, since the re-
lationships between attribute and sinkhole inci-
dence are hard to quantitatively define.

As this study combined all criteria for sink-
hole susceptibility assessment by mathemati-
cally adding the susceptibility scores, it is worth 
noting that different sinkhole variables may not 
be comparable and, therefore, their respective 
susceptibility (scores) may not be accumulated 
directly. Nevertheless, multiple-criteria decision 
analysis (MCDA) requests certain conclusions 
be drawn to aid decision making. Accordingly, 
we combined susceptibility scores and classi-
fied the combined scores in four broad ranges 
to minimize the inherent errors while allowing for 
ranking and prioritizing sinkholes.

As the attribute weights are assigned based 
on our perception and understanding of what 
attributes are considered important and/or re-
liable, other studies using the same variables 
may adjust the weights based on their analysis 
needs/objectives. Furthermore, future research 
may model how the attributes collectively relate 
to quantified sinkhole incidence (e.g., using lin-
ear regression analysis). Through the calibration 
of model parameters, the attribute weights for 
combing susceptibility scores may be defined 
more objectively and with a higher precision.

Specific rock materials play a significant 
role in how sinkholes are formed as well as the 
probability of sinkhole incidence. For example, 
in our karst study area dominated by carbonate 
limestone, if the rock materials contain impure 

Table 3. (Continued).

Attributes

Classes
(Susceptibility 

Scores) Value Ranges
Land use 8

6
4
2

Commercial
Suburban residential

Rural residential
Agricultural/

Manufacturing

Population density
(persons/square kilometer)

9
8
7
6
5
4
3
2
1

  451 – 1660
298 – 450
222 – 297
161 – 221
140 – 160
116 – 139
  78 – 115
49 – 77
  0 – 48

Hydrological flow 
accumulation

(square meters)

9
8
7
6
5
4
3
2
1

10977 – 89841
  1245 – 10976
  468 – 1244
226 – 467
  89 – 225

29 – 88
11 – 28
  5 – 10
0 – 4

Sink density
(sinks/square kilometer)

9
8
7
6
5
4
3
2
1

62 – 71
54 – 61
49 – 53
44 – 48
37 – 43
32 – 36
28 – 31
23 – 27
6 – 22

Sinkhole potential 9
8
7
6
5
4
3
2
1
0

21 – 33
12 – 20
  9 – 11

8
 6 – 7

5
4

 2 – 3
1
0

Well yield 9
8
7
6
5
4
3
2
1
0

581 – 960
376 – 580
251 – 375
231 – 250
181 – 230
141 – 180
  98 – 140
36 – 97
  1 – 35

0

Bedrock depth 9
8
7
6
5
4
3
2
1

  6.6 – 10.4
10.5 – 12.0
12.1 – 12.7
12.8 – 14.1
14.2 – 16.0
16.1 – 18.3
18.4 – 21.0
21.1 – 29.3
29.4 – 42.7
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carbonate rocks or interbedded insoluble lithology in limestone sequences, the dissolution process would operate at 
relatively slow rates, which allows sagging and suffusion sinkholes to be more common than otherwise. In contrast, if 
the carbonate rocks contain pure minerals of calcite and dolomite, the rocks will be considerably soluble to allow voids 
and cracks to form; and collapse sinkholes will have a higher probability to occur than otherwise.

Past researchers have shown that sinkholes are likely to occur along geological faults (Florea 2005; Closson and 
Karaki 2009). For the Ozark karst region, the overall direction of faults is from northwest to southeast. Nevertheless, 
we did not consider the location of fault as a criterion for susceptibility assessment because our study area is relatively 
small without major faults. For studies covering large area with many faults, the location and direction of existing faults 
may be regarded as an important factor for assessing sinkhole susceptibility.

There are many man-made sinks in our study area and we only filter out those with considerably elongated or jagged 
shapes through a shape complexity index. Understand that some apparent man-made sinks may be initially created by 
natural, geological mechanism but later reshaped by human activities. For example, in developed urban areas, humans 
may build detention ponds and roadside swales upon existing land depressions. In undeveloped rural areas, naturally 
formed sinks or lakes may be disturbed by agriculture or farm activities. 

The geologic process and formation of sinkholes may be induced or expedited by human activities, such as mining, 
deforestation, over irrigation, groundwater pumping, broken sewer lines or water mains, inappropriately buried organic 
debris, and improperly compacted construction soil after excavation (Kochanov, 1999; Gutiérrez et al. 2008, 2014).  
Due to this complex human-landscape interaction, detailed geophysical investigation is needed to verify whether the 
appeared man-made sinks are solely created by human activities or have geological origins with potential sinkhole 
hazard. 

When assessing sinkhole susceptibility based on impervious surface percentage, we classified the impervious 
surface land cover from digital aerial photos using the traditional, most commonly used, maximum likelihood classifi-
cation algorithm. A close examination of the classified results on aerial photos indicates that some barren lands were 
misclassified as impervious surface, while some road surfaces were not classified as they should. More advanced 
classification algorithms such as neural network and decision tree, or more sophisticated object-based image software 
such as e-Cognition or Feature Analyst, may help improve the classification results. Nevertheless, more advanced im-
age classification approaches often have more algorithm/software parameters for users to consider. The determination 
of optimal parameters often requires a calibration process consisting of trial-and-error experiments that may be time 
consuming (Wu et al., 2009).

To derive the seasonal water condition for sinks, we used a straightforward change detection method in remote 
sensing in which a pair of winter and summer aerial photos are classified individually and then compared. Future sink-
hole analysis may test other change detection techniques that may be more efficient and/or accurate. For example, 
algebra-based approaches like image differencing, image regression, and change vector analysis may streamline the 
analysis, though initial radiometric normalization between the two photos would be required.

This study examines the surface water conditions of sinks in order to estimate potential sinkhole risk. The advantage 
of this approach is that it is convenient to detect the existence of surface water from aerial photos. It is worth noting 
that groundwater supply also plays a role in the formation and stability of sinkholes. Specifically, the lowering of the 
groundwater table during the dry season or from excessive groundwater pumping may facilitate the formation of cov-
er-collapse sinkholes due to the effect of the drawdown of the piezometric surface in the karst aquifer (Tharp, 2002).

Table 4. The weights assigned to each sink attribute for combining them for sinkhole susceptibility assessment.
Attributes Weights Considerations for Assigning Weights

 • Size
 • Shape complexity
 • Depth to diameter ratio
 • Terrain ruggedness

1
1
2
1

 • Reasonable susceptibility indicator
 • Reasonable susceptibility indicator 
 • Solid theoretical support
 • Reasonable susceptibility indicator

 • Impervious surface %
 • NDVI
 • Seasonal water condition

1
0.5
0.5

 • Reasonable susceptibility indicator 
 • Vegetation matters little when soil is thick
 • Categorical variable with inherent uncertainty

 • Land use
 • Population density
 • Hydrological flow accumulation
 • Sink density
 • Sinkhole potential
 • Well yield 
 • Bedrock depth

4
2
2
2
2
1
1

 • Strong policy implications
 • Solid theoretical support
 • Solid theoretical support
 • Solid theoretical support
 • Solid theoretical support 
 • Reasonable susceptibility indicator 
 • Reasonable susceptibility indicator 
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Conclusions
This study develops robust methodology for computerized sinkhole susceptibility assessment based on common 

GIS and imagery data. The methodology of extracting sinks and assessing potential sinkhole risk by sink attributes can 
be efficiently applied to other karst areas, particularly areas in a hilly and vegetated landscape. 

The selected sinkhole attributes for susceptibility assessment can be conveniently derived with available GIS tools, 
specifically tools in the widely-accessible ArcGIS software. For the fourteen sinkhole attributes used in this study, three 
of their uses are deemed innovative, considering that they have not been used in past studies to assess sinkhole sus-
ceptibility.  These three sinkhole attributes include:

 • The terrain ruggedness index and the maximum hydrological flow accumulation, which can be derived from 
bare-ground DTMs; 

 • The Normalized Difference Vegetation Index (NDVI), which can be derived from 4-band digital photos. 
The proposed computerized susceptibility ranking approach can be effectively used as an initial sinkhole analysis to 

determine where more detailed site investigation and data collection are warranted. The findings of the high-suscepti-
bility sinkholes as well as the corresponding ‘risk zone’ in the Nixa karst area can be used to support decision making 
in prioritizing limited emergency planning and management resources. For example, field-based investigation using 
GPR can be further conducted for those high-priority sinks to examine their underground geophysical structures and 
the probability of further sinkhole activities. If high probability of future sinkhole incidents is confirmed, the landowner 
should build a barrier at a safe distance to prevent access to the sinkhole. Further, if the confirmed high-risk sinkholes 
are located in a populated neighborhood, it may be necessary to properly fill and physically stabilize the void to mediate 
the potential of future collapse.
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