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Abstract: The existing sinkhole database for Kentucky is based on low-resolution

topographic maps created more than fifty years ago. LiDAR (Light Detection and

Ranging) is a relatively recent technique that rapidly and accurately measures features on

earth’s surface in high-resolution. To test the feasibility of using LiDAR to map

sinkholes in Kentucky, we have developed a method of processing LiDAR data to

identify sinkholes and tested the method in portions of the Floyds Fork watershed in

central Kentucky. The method consisted of four steps, creating a high-resolution digital
elevation model (DEM) from LiDAR data, extracting surface depression features from

the DEM, inspecting the depression features for probable sinkholes, and verifying the

probable sinkholes in the field. A total of 1,683 probable sinkholes were identified in the

study area, compared to 383 previously mapped for the same area. We field-checked 121

randomly-selected probable sinkholes and confirmed that 106 of them were karst

sinkholes. This method increased the number of sinkholes by a factor of four with a

success rate between 80% and 93% for the study area, demonstrating that the LiDAR

sinkhole-mapping method is reliable and efficient. This method identified approximately
55% of the previously mapped sinkholes, and approximately 98% of the missed sinkholes

appeared to be filled or covered for urban development and agriculture purposes. The

next step is to extend this method to provide high-resolution sinkhole maps for other

karst areas in Kentucky where LiDAR data become available.

INTRODUCTION

Detailed mapping of sinkholes is critical in under-

standing hydrological processes and mitigating geologi-

cal hazards in karst landscapes. Sinkholes are surface

depressions that form in places where carbonate rocks

are dissolved from water and overlying soil particles are

carried away underground, causing the surface to subside

gently or collapse suddenly (Ford and Williams, 1989;

Currens, 2002; Brinkmann, 2013). There are three

general types of sinkholes, dissolution sinkholes, cover-

subsidence sinkholes, and cover-collapse sinkholes (Ti-

hansky, 1999). Sinkholes serve as a major connection

between surface water and groundwater by collecting

rainfall and draining it internally into the subsurface.

Sinkholes can cause damage to private property and civil

infrastructure such as buildings and roads. Cover-

collapse sinkholes, which occur when the material

overlying subsurface voids collapses, can cause damage

to buildings and roads, farm ponds, and farming

equipment (Currens, 2002). Because of their fixed

cross-section area, sinkholes are prone to overflow and

flooding. Some sinkholes can act as springs and

discharge water to the surface during intense storms

(Currens, 2002). Dinger et al. (2007) estimated the

damages associated with sinkholes in Kentucky were ap-

proximately $23 million dollars per year. Consequently,

existing land-use planning in karst areas often relies on

detailed mapping of sinkholes (Fleury, 2009).

Some sinkholes can be recognized from the USGS

1:24,000 scale topographic maps. These topographic maps

include closed depression features, often indicative of

sinkholes in karst terrains. In the last few decades, several

states have developed digital sinkhole databases based on

the topographic maps (Beck, 1984; Florea et al., 2002;

Paylor et al., 2003; Alexander et al., 2013). Developing a

sinkhole database from topographic maps first requires

digitization of the closed depressions, which is often labor

intensive because the number of sinkholes is commonly in

the thousands on a regional scale (Florea et al., 2002). In

addition, the topographic maps have elevation contour

intervals of 3 m, 6 m, or higher, resulting in shallow and

small sinkholes being overlooked. Furthermore, most

USGS topographic maps were created prior to the 1970s,

and many new sinkholes may have developed since then.

Although people recognize that not all closed depressions

illustrated in these topographic maps are sinkholes,

extensive field verification of the depressions rarely occurs,

because the process is slow and costly.

Remote-sensing data have long been recognized as

useful in locating sinkholes (Newton, 1976). High-

resolution, high-accuracy data obtained from modern

* Corresponding author: Junfeng.zhu@uky.edu

J. Zhu, T.P. Taylor, J.C. Currens, and M.M. Crawford – Improved karst sinkhole mapping in Kentucky using LiDAR techniques: a

pilot study in Floyds Fork Watershed. Journal of Cave and Karst Studies, v. 76, no. 3, p. 207–216. DOI: 10.4311/2013ES0135

Journal of Cave and Karst Studies, December 2014 N 207



remote-sensing technology provide opportunities to im-

prove sinkhole mapping. For example, Littlefield et al.

(1984) applied Landsat images to study the relationship

between lineaments and sinkholes in west-central Florida.

Dinger et al. (2007) used a spectrum enhancement method

on 1 m resolution natural-color images to extract circular

shapes that represented areas with different vegetation

signatures than surrounding areas. Some of the circular

shapes were found in the field to be active sinkholes. In this

study, we used LiDAR (Light Detection and Ranging) to

improve sinkhole mapping. LiDAR is a remote-sensing

technique that rapidly and accurately measures features on

the earth’s surface by sending out short laser-light pulses

and measuring their returns from an aircraft or a terrestrial

platform. A laser pulse can have one or multiple returns

because the pulse can encounter multiple reflection surfaces

when it travels toward the earth’s surface. Collected

LiDAR data, called point clouds, are often post-processed

to classify the points into several categories, including

ground, vegetation, building, and water. LiDAR excels in

revealing small surface features and has been widely used in

studying natural resources and the environment (Evans

and Hudak, 2007; Floyd et al., 2011; Crawford, 2012).

LiDAR has also been applied in studying sinkholes in some

other states. Seale (2005) and Seale et al. (2008) used

LiDAR, also called airborne laser swath mapping, to map

sinkholes in Pinellas County, Florida. They suggested that

contemporaneous aerial photographs should be used in

conjunction with LiDAR for reliable sinkhole mapping.

Rahimi et al. (2010) and Rahimi and Alexander (2013)

applied LiDAR to verify sinkholes mapped in the 1980s

and 1990s in Winona County, Minnesota. They found that

most of the inventoried sinkholes that had not been filled

later for agricultural uses were visible using LiDAR.

Mukherjee and Zachos (2012) used a sink-filling method

to identify sinkholes from LiDAR and found an excellent

match between LiDAR-identified and actual sinkholes in

Nixa, Missouri. To test the feasibility of LiDAR in

providing accurate and detailed sinkhole information for

Kentucky, we developed a sinkhole-mapping method based

on LiDAR point clouds and applied the method in a small

karst watershed in central Kentucky.

STUDY AREA

The study area, Floyds Fork Watershed, is located

approximately 16 km east of Louisville, Kentucky (Fig. 1).

The watershed consists of two 10-digit USGS hydrologic

units and drains parts of Bullitt, Henry, Jefferson, Oldham,

Shelby, and Spencer counties, covering approximately

736 km2. The Floyds Fork stream originates in the

southwestern portion of Henry County and flows south-

west to the Salt River, which flows to the Ohio River. The

area has a subtropical climate with average annual

precipitation of 117 cm (National Drought Mitigation

Center, 2013).

Most of the Floyds Fork watershed is in the Outer

Bluegrass physiographic region, and a small southwest

portion of the downstream watershed is in the Knobs

region (Fig. 1) (Woods et al., 2002). The Outer Bluegrass

region has low to moderate relief with variable soil depth

ranging from thick over limestone to thin over shales

(Newell, 2001). The region is underlain by limestones,

dolomites, and shales of Late Ordovician and Silurian age.

The major formations are, from oldest to youngest, the

Grant Lake Limestone, the Bull Fork Formation, the

Drake Formation, the Osgood Formation, the Laurel

Dolomite, the Waldron Shale, and the Louisville Lime-

stone. The Osgood Formation and the Waldron Shale are

composed of mostly shale (90% or higher) and very little

dolomite. The remaining units are carbonate rocks (i.e.,

limestone and dolomite) with small amounts of calcareous
shale. Most karst development occurs in these formations.

The Knobs region is dominated by rounded hills, ridges,

and narrow, high-gradient valleys (Woods, et al, 2002).

Most of the Knobs region is non-karst and is underlain by

diverse shale, mudstone, and limestone sedimentary rocks

of Silurian and Mississippian age.

DATA AND METHOD

The data used in the sinkhole-mapping method

included mainly LiDAR point clouds and aerial photog-

raphy. The LiDAR data were provided by the Louisville/

Jefferson County Information Consortium (LOJIC)

through the Kentucky Division of Geographic Information
and cover Bullitt, Jefferson, and Oldham Counties. LiDAR

data were collected in March 2009 with an average point

spacing of 1 m and a vertical root-mean-square error of

8.8 cm. The LiDAR points were post-processed into

several categories. The categories associated with physical

features include ground, low vegetation, medium vegeta-

tion, high vegetation, building, and water. The actual study

area, which excluded non-karst areas, was approximately

580 km2, or 79% of the watershed (Fig. 1). Bing Maps was

the primary aerial photography used for this study. Data

from Bing Maps were imported directly into ArcMap 10.1

(ESRI, 2012) as base maps. In addition to Bing Maps, we

also used Google Earth historic images and aerial

photography collected by LOJIC at two different times,

one in 2009 and the other in 2012.

The sinkhole-mapping method has four steps, building

a digital elevation model (DEM) from LiDAR point
clouds, extracting surficial depression features for the

DEM, inspecting the depression features for probable

sinkholes, and field-checking the probable sinkholes. The

first three steps were carried out in ArcMap 10.1.

In the first step, the LiDAR ground points were used to

create a DEM with a cell size of 1.5 m using an average

binning method. The average binning method calculates

the elevation for each cell by assigning the average value of

all points in the cell. More sophisticated interpolation
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methods, such as kriging, could potentially be used for this

application. Because the cell size of the DEM was larger

than the LiDAR point spacing, meaning at least one

measurement is available for each cell, the average binning

method was considered sufficient for this study.

Depression features were extracted from the DEM at

the second step. A fill tool in ArcGIS was used to identify

depression features on the DEM. The fill tool was

originally developed to remove small depressions resulting

from data noise; here it was used to find natural

Figure 1. Location and geology of the study area. The Floyds Fork watershed is indicated by the irregular black line, with the

bedrock geology shown for the karst portion that is the study area. The thin purple line is the boundary between the Blue Grass

and Knobs regions.
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depressions. The tool fills depressions on the DEM with an

optional user-specified maximum sink depth. All depres-

sions that are less than the maximum depth and are lower

than their lowest adjacent neighbor will be filled to the

height of their pour points. We used a maximum

depression depth of 6 m, which allows identification of

sinkholes that are less than 6 m deep. We considered this

depth sufficient to identify most natural sinkholes in the

study area. Mukherjee and Zachos (2012) found that a 4-m

depth threshold was sufficient for identifying existing

sinkholes in Nixa, Missouri. The fill tool generated a new

filled DEM, and the depressions were then extracted by

subtracting the filled DEM from the original DEM to

create a depression raster.

The depressions identified in the fill procedure included

depressions that were not sinkholes. Furthermore, we were

interested in locating sinkholes that were considered to

have a significant hydrologic impact in the Floyds Fork

watershed, that is, sinkholes with relatively large drainage

areas. For this reason, we selected the depressions with an

area larger than 46 m2 and depth of greater than 0.3 m for

further processing. The selected depressions were then

converted from raster format to polygon format. These

polygons were further smoothed, and the holes inside some

polygons that were artifacts of the raster-to-polygon

conversion process were removed. These procedures for

generating depression polygons from LiDAR can be

accomplished by sequentially using several ArcGIS com-

mands, including LAS Dataset To Raster, Fill, Raster

Calculator, Raster to Polygon, Smooth Polygon, and

Eliminate Polygon Part. To streamline these procedures,

we built a model tool with a single user interface. The

model tool asks the user to provide a single input, the

LiDAR dataset, and then executes the aforementioned

commands with default parameter values (DEM cell size,

fill depth, depression area, smooth tolerance, etc.) auto-

matically to create depression polygons. The tool also

allows a user to change the parameter values on the same

user interface.

In the third step, every polygon was visually inspected

and manually classified into one of three categories,

probable sinkholes, suspicious sinkholes, and non-sink-

holes. A shaded-relief map with 53 vertical exaggeration

was created from the LiDAR DEM to amplify the shape

and depth of the depression features. The shaded-relief

map along with aerial photography was used to classify the

polygons. Seale et al. (2008) and Alexander et al. (2013)

also used aerial photography to help identify sinkholes in

their studies. To ensure a consistent classification, the

polygon classification was carried out by a procedure

consisting of an initial classification, a review, and

discussion. The initial classification and the review were

conducted by different individuals. The review results were

then discussed to reach the final classifications. Although

many polygons needed to be inspected, many of them

were unambiguously stream channels, water-filled ponds,

swimming pools, and drainage structures and were very

easily and quickly identified as non-sinkholes. On the other

hand, natural sinkholes tend to have a circular or elliptical

shape and many of them have one or more internal

drainage points (i.e., throats) that are readily visible on the

shaded-relief map. On occasions, the classification proce-

dure could not lead us to a decision, and these ambiguous

polygons were assigned to suspicious sinkholes.

In the fourth step, probable sinkholes were randomly

sampled for field-checking. To create a random sample of

probable sinkholes over the entire area, we first divided the

area by creating a 3,000-by-4000 ft grid, producing a set of

cells larger than the number of probable sinkholes, and

then randomly selecting one sinkhole from each cell that

contained at least one, creating a pool of probable
sinkholes from which those to be field-checked were

randomly selected. Field investigators used a GPS-enabled

iPad with a map showing locations of the selected probable

sinkhole. The iPad tracked locations of the field investiga-

tors in real-time in relation to the location of each target to

minimize location errors; since sinkholes in the study area

generally occur in clusters, it is easy to check the wrong

location. To check a probable sinkhole in the field we

considered whether the feature was a depression, whether

drain holes existed inside the feature, whether man-made

structure(s) existed within the feature, whether there was

vegetation within the feature, and whether water existed

within the feature. The same sampling and field-checking

methods were also used for suspicious sinkholes.

RESULTS AND DISCUSSION

We extracted approximately 10,720 depression poly-

gons in the study area from the DEM created from the

LiDAR dataset. Among the extracted polygons, 1,696 were

classified as probable sinkholes and 282 as suspicious

sinkholes. Approximately 10% of the probable sinkholes

from Bullitt County and 5% from Jefferson and Oldham

Counties were selected for field-checking. Excluding the

samples that were inaccessible, mostly due to absent land-

owners, we field-checked 121 probable sinkholes and

confirmed 106 of them (88%) as sinkholes (Fig. 2). We

also randomly selected and field-checked 18 suspicious

sinkholes and found 5 of them were actual sinkholes. The

total number of actual sinkholes detected in the LiDAR

data would be, based on the field-checking statistics, 1563.

The LiDAR-derived sinkhole coverage is available to the
public on the Kentucky Geological Survey’s online map

service (http://kgs.uky.edu/kgsmap/kgsgeoserver/viewer.asp).

The large number of polygons generated indicated that

the depression-extraction procedure was effective in

locating surface depressions. Although some of the

polygons were associated with sinkholes, more than 80%

of them were stream channels, ponds, or road drains or

other man-made structures. The number of sinkhole-like

depressions can be reduced by using an automated
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procedure. For example, Miao et al. (2013) illustrated one

such procedure by using a random forest algorithm that

uses shape and depth parameters to extract circular- or

elliptical-shaped sinkholes from depressions. In our study

area, we found that although most sinkholes have a

circular or elliptical shapes, some sinkholes have more

complicated shapes and may potentially be excluded by an

automated procedure.

The polygon-classification process was actually quite

fast and effective, because many polygons were easy to

identify when using shaded-relief maps and high-resolution

aerial photography (Fig. 4). Polygons associated with

stream channels were the easiest to identify as non-

sinkholes. On aerial photography, each had an elongated

shape and overlapped stream channels; on a shaped-relief

map, each had a smooth and flat bottom. The smoothed

bottoms were artifacts on the DEM resulting from LiDAR

beams being absorbed at the water surface. Polygons

associated with water-filled ponds were also easily identi-

fiable as non-sinkholes, because these polygons also had

flat bottoms on shaded-relief maps. Polygons associated

with man-made structures that have unnatural and

irregular shapes were easily identifiable as non-sinkholes

from aerial photography. On the other hand, some

polygons associated with cover-collapse sinkholes were

readily identifiable. On a shaded-relief map, those polygons

had an internal drain that showed as a hole or throat inside

the depression. Such polygons, when shown by aerial

photography to be in a forested area of cluster of trees

surrounded by grassland, were likely to be true cover-

Figure 2. Field-checking results for randomly sampled probable sinkholes identified from the LiDAR data.
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collapse sinkholes, but if those polygons were close to

residential houses or roads, they could be either sinkholes

or man-made retention basins with drains that appeared as

holes. Polygons associated with subsidence sinkholes were

harder to screen. On a shaded-relief map, they appeared as

shallow, bowl-shaped depressions; on aerial photography,

they could be in the middle of a farm field or close to a

residential area. These polygons could have been either

sinkholes or ponds that were empty when LiDAR was

flown. For these polygons, we used historical aerial images

to determine if these features were natural sinkholes or

man-made ponds.

The field-checking of probable sinkholes showed an

88% success rate. However, the field-checked sinkholes

were approximately 7% of all the sinkholes we identified.

To understand the overall success rate and the margin of

error for the study area, we considered this problem as a

binomial distribution with two possible outcomes, sinkhole

and non-sinkhole, and used sample statistics to estimate

population parameters. The estimated proportion, i.e., the

success rate (p) and standard deviation (ss) are (Zar, 1999):

p~
X

n
and ss~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ

n{1
1{

n

N

� �r
, ð1Þ

where N is size of the population, n is the number of

samples, and X is the number of success in the samples. We

identified 1,696 probable sinkholes from LiDAR and field-

checked 121. Among the 121 field-checked sinkholes, there

are 106 sinkholes, 9 non-sinkholes, and 6 inconclusive.

Considering all the inconclusive as non-sinkholes, the

Figure 3. Comparison between sinkholes mapped from the LiDAR data and those previously mapped from topographic maps.
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Figure 4. Examples of polygon classification, showing polygons overlain with shaded-relief (left) or aerial images (right): a)

Examples of probable sinkholes. b) Examples of non-sinkholes. c) Examples of suspected sinkholes. The shaded-relief maps are

53 vertically exaggerated.
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estimated success rate and standard deviation are 0.88 and

0.03, respectively.

To estimate the margin of error, we calculated 95% of

confidence interval based on Zar (1999), which calculates

the lower confidence interval using

L1~
X

Xz n{Xz1ð ÞF0:05 2ð Þ, u1, u2

, ð2Þ

where u1~2 n{Xz1ð Þ, u2~2X , and F0:05 2ð Þ, u1, u2
is the 2-

tailed 0.05 critical value for a F distribution with degrees of

freedom v2 and v1; and the upper confidence limit using

L2~
Xz1ð ÞF0:05 2ð Þ u0

1
, u
0
2

n{Xz Xz1ð ÞF0:05 2ð Þu0
1
, u
0
2

, ð3Þ

where u
0

1~u2z2, u
0

2~u1{2, and F0:05 2ð Þ, u
0
1
, u
0
2

is the 2-tailed

0.05 critical value for a F distribution with degrees of

freedom v2 and v1. Using equations (2) and (3), the lower

and upper confidence limits are 0.80 and 0.93. In another

words, we have 95% confidence in stating that the success

rate of the method for the study area falls between 80% and

93%.

The success rate between 80% and 93% for the study

area suggested that this method is reliable and promising.

To further improve the reliability of the method, we

explored the relationship between the field-checked de-

pressions and true sinkholes by examined two prominent
depression features, berms and holes, both of which were

prominent on the shaded-relief maps. A berm is a

prominent ridge along the rim of a depression, and a hole

is a spot at the bottom of the depression that appears much

deeper than its surroundings. All of the field-checked

depressions fit into one of three categories: with-berm-no-

hole, no-berm-no-hole, and no-berm-with-hole. The num-

ber of field-checked depressions in each category and the

success rate for each category are summarized in Table 1.

The no-berm-with-hole category made up 59% of the

overall field-checked depressions, and this category had the

highest success rate (97%) among the three categories.

Most of the no-berm-with-hole features were revealed in

the field as cover-collapse sinkholes, with the remainder

being sinkholes with vertical rock openings or cover-

subsidence sinkholes. The no-berm-no-hole category made

up 28% of the overall field-checked depressions. This

category proved 88% successful, and most sinkholes in this

category were cover-subsidence sinkholes. The with-berm-

no-hole category made up 13% of the overall checked

sinkholes and had the lowest success rate (44%). The berm-

like shape proved to be a man-made structure for a water-

holding pond. But through time, as residual insoluble fill in

rock joints is eroded into underlying conduits, many ponds

started to leak and eventually were unable to hold water,

thus functioning as sinkholes. For this type of depression it

was difficult to distinguish between a pond that holds water

periodically and a pond-turned-sinkhole.

Among the fifteen probable sinkholes that were not

confirmed as true sinkholes in the field, nine of them were

confirmed as non-sinkholes; they were either stream

meander cutoffs, ponds with water or trash, or man-made

drains. The other five features, shown as inconclusive in

Table 1. Summary of field-checking of probable sinkholes, showing three types of depression characteristics and their

success rates.
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Figure 2, could not be determined in the field. They

appeared as a mix of natural karst features disturbed by

human activities.

Since we focused on depression features that were 46 m2

and larger, smaller potential sinkholes were not included.

From the shaded-relief maps, we noticed that in some areas

where large sinkholes were present there were also smaller

depression features that appeared to be sinkholes. Figure 5
shows an example of such areas. The method we developed

can be readily tailored to identify the smaller sinkholes

when resources become available.

The existing Kentucky sinkhole coverage, which was

derived from the USGS topographic maps, had 383

sinkholes for the same area (Fig. 3). Among the 383

sinkholes, 215 (56%) of them were also detected from the

LiDAR data, and 168 (44%) of them were missed. Sixteen
of the sinkholes found in both databases had slightly

different locations but obviously corresponded to the same

features, judging from the shaded-relief map. A visual

inspection of the sinkholes missed by the LiDAR analysis

using recent aerial images showed that approximately half

of them overlapped with man-made structures, such as

roads, buildings, parking lots, and quarries, and the rest

were located on open fields, such as pasture, but had either

no or a very shallow depression associated with them. We

speculate that many of those sinkholes may have been filled

for agriculture or other purposes. This comparison showed

that any sinkhole coverage needs to be updated frequently,
because sinkholes are temporary features and can be easily

enhanced, destroyed, or altered by human activities.

CONCLUSIONS

In this study, we developed a sinkhole-mapping method

that uses high-resolution LiDAR and aerial photography

to map karst sinkholes in detail. We applied the method to
parts of the Floyds Fork watershed in central Kentucky

and revealed four times as many sinkholes as the existing

database for the same area. Field-checking suggested that

the success rate of this method was between 80% and 93%

Figure 5. Shaded-relief map (53 vertically exaggerated) showing examples of potential small sinkholes not processed in

this study.
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for the study area, indicating the method is accurate and

reliable.

High-density and high-accuracy LiDAR data provide a

great opportunity for mapping karst sinkholes in high

resolution and with great detail. In particular, bare-earth

elevation data in LiDAR point clouds revealed sinkholes in

forested areas that were undetectable using only aerial

images. The depression-extraction procedure was effective

in locating surface depressions, but it did not distinguish

sinkholes from other depressions, resulting in the need for

additional visual screening. Shaded-relief maps, especially

with vertical exaggeration, revealed depression features in

great detail and served as the primary tool for the visual

screening process. Examining aerial images from different

sources and time periods was also critical to distinguishing

sinkholes from other depression features. Shape and depth

characteristics of the depressions were closely related to the

physical features they represented. Most non-sinkhole

depressions can be easily identified. Furthermore, field-

checking suggested that no-berm-with-hole depressions

were most likely to be sinkholes and the with-berm-no-

hole depressions could be either sinkholes or ponds.
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