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Abstract: Mixing-transport of solute entering at sinkholes or from within the limestone

matrix in cavernous conduits is an important process for contaminant migration in karst

aquifers. This process may be described with a one-dimensional advection-dispersion

equation incorporating the fluxes of solute and water across the conduit wall. For the

dilution-dispersion equation, which does not include solute flux across the wall but has

the flux of water through the wall, the sufficient and necessary condition for neglecting
conduit dispersion is showed by scale analysis to be LP&a, where a is the conduit radius,

and LP is the spatial scale of the solute plume. A straightforward necessary and

practically, though not strictly, sufficient condition is a=WTB%1, where W is the mean

velocity of conduit flow, and TB is the time scale of the breakthrough curve. For the

releasing-dispersion equation, which includes the fluxes of water and solute across the

wall, LP&a is still a sufficient condition, but no longer a necessary one. The inequality

a%WTB is neither a necessary condition nor a sufficient condition.

INTRODUCTION

The most distinctive feature of karst aquifers is a set of

interconnected caves or conduits that form complex

underground drainage systems for water and contaminants

(Shuster and White, 1971; Kiraly, 1998). These large

conduits, often connected to sinkholes and perennial

springs at their upstream and downstream ends, respec-

tively, are formed by the dissolving action of acid and

aggressive rainwater on carbonate bedrock (usually lime-

stone, dolomite, or marble) over thousands to millions of

years. Because the scales of water flow and solute

concentration of interest for karst aquifers is typically

comparable to, or smaller than, the conduit lengths,

sinkholes, springs, and conduits behave like singular points

and lines, the prevalence of which makes it a formidable

task to accurately model flow and transport in the aquifers.

There are some important works regarding modeling

contaminant transport in karst conduits with leaky walls.

Tang et al. (1981) developed a model for solute transport in

a single fracture, in which the mass transfer between the

fracture and the rock matrix is assumed to be diffusive. The

weakness of the model is the absence of active solute and

water exchange between the fracture and the matrix, which

is not realistic for karst aquifers. Contaminant transport in

aquifers containing numerous small fractures is often

described by a dual-porosity model and a continuum

approach, in which contaminant exchange between frac-

tures and porous matrix is modeled by a transfer coefficient

representing a diffusive process (Millington and Quirk,

1961; Bear et al., 1993). There are two problems when

applying the dual-porosity model to karst aquifers. One is

that the exchange of solute between conduits and the

matrix is assumed to be diffusive, and the other is that the

aforementioned singularity caused by the prevalence of

several large conduits was not considered. A numerical

model called CAVE (Carbonate Aquifer Void Evolution)

developed by Clemens et al. (1996) aims to model the water

and calcium exchange between a conduit and the matrix.

The liability of CAVE is that the calcium transfer between

the matrix and the conduit is diffusion-like (Dreybrodt and

Eisenlohr, 2000). In reality, the solute transfer from the

matrix to the conduit can be advective or dispersive.

Equations including advection and dispersion were

developed to account for retention in immobile-fluid

regions (2RNE) and describe transport in a single conduit

(Field and Pinsky, 2000; Goldscheider, 2008). The idea is

use of the Green’s function for the boundary value problem

to model solute transport in a conduit. Weaknesses of this

analytical model are that advective dilution caused by

seepage flow from the matrix is neglected and the conduit

dispersion is held constant to facilitate solution. Instead,

retention in immobile-fluid regions is used to simulate the

tailing phenomena observed in breakthrough curves at

springs. Birk et al. (2005) addressed the mixing of matrix

water and conduit water and the consequences with respect

to interpretation of the spring breakthrough curve. In that

scenario, there was no solute flux from the matrix into the

conduit. A weakness of their model is the advective

dilution induced by the seepage flow from the matrix was

not considered.

Water in karst conduits is typically a combination of the

water entering at sinkholes and water released from the

limestone matrix. In a similar vein, contaminants in karst

conduits consist of those entering through sinkholes and

those released from the matrix. The mixing-transport of

contaminants in a conduit, for the case of negligible

conduit dispersion, is analytically solved using the method

of characteristics (Li, 2009a; Li, 2009b). The motivation of

this article is to investigate when conduit dispersion can be
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neglected for mixing-transport of contaminants in a karst

conduit. The results can provide us with insight on when

the analytical solution to a simplified equation neglecting

dispersion is applicable, as well as when numerical solution

of the full equation is needed.

MIXING-TRANSPORT OF CONTAMINANTS IN A CONDUIT

The transport of solute by flow in a solid-wall pipe can

be described with a one-dimensional advection-dispersion

equation (Taylor, 1954). Our problem is different in that

both water and solute seep into the conduit from the

permeable wall. Though complicated, the mixing-transport

of contaminants (solute) in a karst conduit may be

described using a relatively simple one-dimensional equa-

tion. With a consideration of conduit dispersion, solute-

mass conservation gives (Li et al., 2008; Li, 2009a)
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where t [T] is time, z [L] is the conduit-wise distance from

the sinkhole, a [L] is the conduit radius, C [M L23] is the

concentration of solute in the conduit (averaged over the

cross-sectional area), W [L T21] is the mean speed of

conduit flow, Dc [L2 T21] is conduit dispersion, and J [M

L22 T21] is the specific solute flux across the conduit wall.

Water mass conservation gives

W zð Þ~W0z
z

t
, ð2Þ

where W0 is the mean speed of flow at the sinkhole, and t is

defined as:

t~
a

2q
, ð3Þ

where q is the specific water flux across the wall.

The conduit dispersion can be parameterized by (Li,

2004; Li et al., 2008)

Dc~aW : ð4Þ

This equation for the dispersion coefficient is for turbulent

conduit flow, not for laminar flow. The dispersion

coefficient for laminar flow is dependent of the square of

velocity, often called Taylor dispersion (Bear, 1972).

SCALE ANALYSIS OF DILUTION-DISPERSION EQUATION

WITHOUT WALL SOLUTE FLUX

There is an inhomogenous term on the right side of

Equation (1). Also, both the flow velocity W and the

conduit dispersion Dc are dependent variables. For these

reasons, it is difficult to directly evaluate the equation. Two

steps are taken to evaluate the equation. The first step is to

simplify the equation into an equation that ignores the

solute flux but includes the water flux across the wall,

which is called the dilution-dispersion equation because

clean seepage water dilutes contaminants that have entered

at sinkholes. Scale analysis is used decide about the

significance of conduit dispersion. Then the conclusion

from the first step is used to evaluate whether or not it can

apply to the mixing-transport equation incorporating the

fluxes of water and solute across the wall, called the

(solute) releasing-dispersion equation.

A SUFFICIENT AND NECESSARY CONDITION FOR

NEGLECTING DISPERSION IN

DILUTION-DISPERSION EQUATION

Ignoring the flux of solute across the conduit wall,

Equation (1) simplifies to
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Without losing generality and considering the rising limbs

of the breakthrough curves, scale analysis of the above

equation yields
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where TB and LP are the time and spatial scales of the

solute plume, respectively. Because Equation (6) consists of

three terms, it follows that the dispersion term can be

neglected when and only when

L2
P&DcTB: ð7Þ

A MORE STRAIGHTFORWARD NECESSARY CONDITION

In the above section, a sufficient and necessary

condition for neglecting conduit dispersion in the dilu-

tion-dispersion equation is defined. This subsection aims to

derive another, more straightforward sufficient and neces-

sary condition.

If dispersion can be neglected in Equation (6),

inequality (7) must be valid as a necessary condition.

Substituting Equation (7) into (6) yields:

LP*WTB, ð8Þ

which states that the transport is advection-dominated.

Substituting Equations (4) and (8) into Equation (7) yields

a%WTB, ð9Þ

which is a necessary condition for neglecting conduit

dispersion in Equation (5).

Below is a proof that the inequality in Equation (9)

alone is not a sufficient condition for neglecting conduit

dispersion. Suppose that with condition Equation (9), the

dispersion term in Equation (5) cannot be neglected with

respect to the advection term, or more explicitly,

W
C

LP

*vDc

C

L2
P

, ð10Þ
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where ,, means being roughly equal to or smaller than.

Then

LP*va: ð11Þ

Combining this inequality with Equation (9) yields

WTB&aw*LP, ð12Þ

From the first and last terms of this inequality, the

unsteady term, or the first term in Equation (5), can be

neglected with respect to the advection term. Thus the

transport is nearly steady, and thus we get LP,a.

Inequality (12) becomes

WTB&LP*a: ð13Þ

If there is a solution allowed under restraint by Equation

(13), the condition imposed by Equation (9) will not be a

sufficient for neglecting conduit dispersion.

Now we investigate whether or not there is a solution

allowed under restraint by Equation (13). As above, the

problem is nearly steady, and thus from Equation (5), we have

L
Lz

WC{Dc

LC

Lz

� �
~0: ð14Þ

Note that the terms in the parentheses are exactly the solute

flux in the conduit. Equation (14) means that the solute flux

is a constant through the conduit. This equation is a second-

order ordinary differential equation, the solution of which

requires two boundary conditions, one at the conduit

entrance and the other at the exit. We would let the conduit

length roughly equal to the radius, and at the same time,

prescribe two constant-concentration conditions for the two

ends. Thus, a physically meaningful solution is found that

satisfies the restraint imposed by Equation (13). Therefore,

condition imposed by Equation (9) is not strictly sufficient

for neglecting conduit dispersion.

However, in practical field circumstances, such as dye-

tracing experiments, the problem becomes better specified.

For instance, the breakthrough curves of dye or contam-

inants at the conduit entrance and the exit, or the boundary

conditions at the two ends, are invariably transient or

unsteady. Thus the above boundary conditions are not met

in field cases, and Equation (14) is typically not satisfied.

Therefore, the above supposition that the dispersion term

in Equation (5) cannot be neglected with respect to the

advection term under the condition imposed by Equation

(9), is invalid for field cases. In other words, the condition

imposed by Equation (9) is sufficient for neglecting conduit

dispersion in practical field cases.

The condition imposed by Equation (9) is not strictly

sufficient for neglecting conduit dispersion, because the

inequality in Equation (13) may be satisfied. Naturally, a

violation of the inequality in Equation (13) may result in a

sufficient condition such as

LP&a: ð15Þ

Actually, if the above inequality is satisfied, through

Equation (6), the dispersion term must be negligible with

respect to the advection term (a sufficient condition). On

the other hand, if conduit dispersion can be neglected in

Equation (6), the above inequality must be valid (a

necessary condition). Therefore, inequality (15) is a

necessary and sufficient condition.

ANALYSIS FOR RELEASING-DISPERSION EQUATION

Whether or not inequality Equation (7), namely,

L2
P&DcTB, is a condition sufficient or necessary or both

for neglecting dispersion in the releasing-dispersion equa-

tion, where some solute enters through the conduit wall

(Equation (1)), will be investigated in this section. This

category is more difficult to analyze in that the right side of

the equation is non-zero.

When L2
P&DcTB is satisfied, the dispersion term in

Equation (1) must be negligible. However, it is no longer

a necessary condition. Suppose the first term of Equation

(1) is roughly equal to or smaller than the third term, and

the third term, the dispersion, can be neglected. Then

both terms can be ignored, in which case the main

balance is between the second term and the right-hand

side. That is

W
C

LP

*
2

a
J: ð16Þ

With the use of J~Cmq, wherein Cm is the concentration

of solute released from the matrix, the above equation

transforms to LP*aWC=2qCm. It follows that the initial

supposition is possible, in which case the spatial scale of

the solute plume is described by this equation. Therefore,

L2
P&DcTB is no longer a necessary condition for neglecting

conduit dispersion.

We now ask whether or not the inequality in Equation

(9), a%WTB, is a sufficient condition. Following the

discussion in the last section, a physical solution can be

found, except that the right side of Equation (14) now has a

non-homogeneous term resulting from the wall solute flux.

Therefore, as before, the inequality in Equation (9) is not a

strictly sufficient condition.

In the previous section, we showed that the inequality in

Equation (9) is a necessary condition for neglecting conduit

dispersion. This is because the main balance in the dilution-

dispersion equation is between the first and second terms

when dispersion is negligible. However, for the releasing-

dispersion equation, that is not valid any longer, because

the non-homogenous term now complicates the equation.

Thus, we can not always get the inequality in Equation (9)

as in the last section. Therefore, the inequality in Equation

(9) is not a strictly necessary condition for neglecting

conduit dispersion in the releasing-dispersion equation. In

a quick summary, the inequality in Equation (9) is neither a

sufficient nor a necessary condition.
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At the beginning of this section, L2
P&DcTB is shown to

be a sufficient but not a necessary condition for neglecting

conduit dispersion in the releasing-dispersion equation.

Similarly, condition LP&a is not a necessary condition.

Supposing LP*va and following the same procedure, the

second term in Equation (1) can be roughly equal to or

smaller than the third term, while the third term can be

neglected. Thus, both the second and third terms can be

ignored in the equation. In this case, the main balance is

between the first and last terms, and the time-scale of the

breakthrough curve is determined by a similar equation,

TB*aC=2qCm. Therefore, LP&a is no longer a necessary

condition for neglecting conduit dispersion. Of course, this

equality is a sufficient condition, because the dispersion

term can be neglected with respect to the advection term,

and therefore, can be neglected from Equation (1).

A NUMERICAL EXAMPLE

In the above two sections, through scale analysis, we

investigate whether or not three inequalities, L2
P&DcTB,

WTB&a, and LP&a, are sufficient and/or necessary

conditions. In this section, a numerical method is used to

verify that LP&a is a sufficient condition for neglecting

conduit dispersion in the releasing-dispersion equation.

In the numerical example, solute and water are released

from the matrix into a conduit, but no solute enters via a

sinkhole. The analytical solution of this problem is

presented as online supplementary documents to Li

(2009a), while the numerical solution is sought by the

implicit and stable Crank-Nicolson scheme (Li, 2004).

Table 1 lists the parameters of the defined example, in

which the cell Reynolds number is very small, which

guarantees the accuracy of the numerical solution. Matches

between the numerical solution and the analytical solution

are plotted in Figures 1 through 5. The durations of release

ts in Figures 1 through 5 are 0.1, 0.2, 0.5, 2.0, and 6.0 hours,

respectively. Because inequality LP&a is satisfied, the

matches between the numerical solutions and the analytical

solutions appear to be good. This numerical result verifies

that the inequality LP&a is a sufficient condition, as

showed by the preceding scale analysis.

Figure 1. Comparison between the breakthrough curves

from the numerical solution of the releasing-dispersion
equation and the analytical solution, in which the duration

of release ts= 0.1 hour.

Table 1. The parameters of the designed numerical example.

Parameter Value Units

Conduit radius, a 2.0 m

Conduit length, L 100.0 m

Matrix solute concentration, Cm 30.0 mg L21

Water flux at sinkhole, Q0 0.18 m3 s21

Water flux from conduit wall, Qr 1.62 m3 s21

Total water flux at spring, Qs 1.8 m3 s21

Specific water flux across wall, q 0.00129 m s21

Reynolds numbera, Re(cell) 0.028

a The Reynolds number controls the accuracy of spatial discretization in the

numerical solution.

Figure 2. Same as Figure 1, except that ts= 0.2 hour.

Figure 3. Same as Figure 1, except that ts= 0.5 hour.
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DISCUSSION

The results of our scale analysis of the significance of

dispersion in mixing-transport in karst conduits are

summarized in Table 2. For the dilution-dispersion equa-

tion that includes flux of water but not solute from the

wall, a straightforward necessary and practically sufficient

condition for neglecting conduit dispersion is WTB&a. A

potential application of this condition is the case where no

contaminants are flowing from the matrix and the released

matrix water dilutes contaminants entering via sinkholes,

i.e., dye-tracing experiments.

Suppose that a dye-tracing experiment has a mean flow

velocity (W0) of 0.1 m s21 and a conduit has a radius a of

1 m. In order to neglect conduit dispersion, a ratio of

a=WTB~0:01 would require dye release to have a duration

satisfying TBw100a=W~1000 seconds. In other words, a

dye trace with a release duration of tens of minutes would

result in negligible conduit dispersion, and the dilution-

transport model developed in Li (2009b) should be

applicable. If applying that model yields an unreasonable

overestimation of the conduit length and spring water flux,

we would conclude that the drainage system most likely

consists of a network of conduits, rather than a single

conduit, or there is a strong interaction between conduit

and matrix. Notably, vortices at conduit enlargements

could contribute to greater dispersion than usual. To

exclude that possibility, a dye-release duration up to

several hours would be desirable to neglect conduit

dispersion. Such a requirement is seldom satisfied when

implementing dye-tracing experiments. Nevertheless, a

long duration induced by rain events may mimic the

suggested dye-input rate.

When there is solute flux being released from the

matrix, things become more difficult to analyze because the

inhomogenous term, i.e., the solute flux across the wall,

complicates the releasing-dispersion equation so that

scale analysis is more difficult to conduct. However, we

nonetheless get the results listed in Table 2. A notable

feature of the numerical solutions in Figures 1 through 5 is

the long tail in the numerical solution, which is believed to

result from variable conduit dispersion. Nevertheless, the

tail caused by variable conduit dispersion is much smaller

than that observed in field experiments; see Birk et al.

(2005). This illustrates that retention in immobile-water

region is a more important mechanism to produce tailing.

CONCLUSIONS

The mixing-transport of contaminants in a karst

conduit can be described using a one-dimensional advec-

tion-dispersion equation incorporating fluxes of water and

solute across the conduit wall. We call the equation

without solute flux but with water flux across the wall

the dilution-dispersion equation, while calling the equation

with fluxes of water and solute across the wall the

releasing-dispersion equation.

Scale analysis was performed to investigate the signif-

icance of dispersion in the dilution-dispersion equation. As

dye-tracing experiments may be described with the

equation, the result of our scale analysis has important

applications to dye tracing experiments and similar

physical processes, such as surface contaminants being

carried into a sinkhole and transported in a conduit. A rule

of thumb is that when and only when a=WTB%1, conduit

dispersion can be ignored. This inequality, in conjunction

with the dilution-transport model (Li, 2009b), provides us

with a tool to investigate whether the drainage system

under dye-tracing experiments mainly consists of a single

conduit or a conduit network. More specifically, if

applying the model results in an unreasonable estimate of

conduit parameters such as the length, the conduit system

is likely to consist of a network, or there is a strong

interaction between conduit and matrix.

When contaminants sequestered in the rock matrix are

released into the conduit, the process may be described

with the releasing-dispersion equation. In this case, our

scale analysis reveals that LP&a is a sufficient but not

Figure 4. Same as Figure 1, except that ts= 2.0 hours. Figure 5. Same as Figure 1, except that ts= 6.0 hours.
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necessary condition for neglecting conduit dispersion,

which is verified by a preliminary numerical study. In

reality, solute transport in karst conduits is a result of
different interactive processes. If conduit dispersion can be

shown to be negligible, we may be able to detect other

mechanisms, such as retention in immobile water and

multiple pathways, dominating the mixing-transport, thus

being able to resolve different mechanisms. This is the

primary aim of our study.
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Table 2. Results from our scale analysis of the significance of dispersion in mixing-transport in a karst conduit. Note that

WTB & a is a practically sufficient condition for neglecting conduit dispersion in the dilution-dispersion equation.

Condition

Conduit Dispersion Neglected in

Dilution-Dispersion Equation

Conduit Dispersion Neglected in

Releasing-Dispersion Equation

L2
P&DcTB Sufficient and Necessary Sufficient and Unnecessary

WTB&a Necessary but not Sufficient Neither Necessary nor Sufficient

LP&a Sufficient and Necessary Sufficient and Unnecessary
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