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Abstract: The advection-dispersion model (ADM) is a good tool for simulating

transport of dye or solutes in a solution conduit. Because the general problem of

transport can be decomposed into two problems, a boundary-value problem and an

initial-value problem, the complete solution is a superposition of the solutions for these

two problems. In this paper, the solution for the general problem is explained. A direct
application of the solution for the boundary-value problem is dye-tracing experiments.

The purpose is inclusion of the input history of a solute dye into the ADM. The

measured breakthrough curve of a dye-tracing experiment is used to invert for the release

history of the dye at the input point through the ADM. It is mathematically shown that

the breakthrough curve can not be directly used to invert for the boundary condition at a

tracer release point. Therefore, a conductance-fitting method is employed to obtain the

input history. The inverted history for a simple example is then shown to be a step

function with amplitude of 420 mg/L and a duration of 10 minutes. Simulations illustrate
that the breakthrough curves at downstream springs provide a means for understanding

the migration of dye. A discussion of the implication of the solution for an initial-value

problem (e.g., simulating transport of preexisting solutes such as dissolved calcium

carbonate in solution conduits) is also included.

INTRODUCTION

Solute-transport modeling, as part of a quantitative

tracer-test conducted in karstic aquifers, is well established

to be critical to developing an understanding of the nature

of solute migration in solution conduits (e.g., Field and

Pinsky 2000; Birk et al. 2005). The essential solute-

transport parameters of velocity, dispersion, and retarda-

tion, to name just a few, are generally determined from

groundwater tracing and solute-transport modeling pro-

cesses. Unfortunately, the general complexity of a tracer-

breakthrough curve (BTC) often leads to the development

or use of models of ever increasing intricacies in attempts

to obtain improved model fits to measured data. Although

the improved model fits are usually preferred and valuable,

there remain some concerns as to the overall applicability

of models with very large numbers of parameters,

especially those whose parameters may not be transferrable

to other examples.

The advection-dispersion model (ADM), also known as

the equilibrium model, may be regarded as the simplest of

the various mathematical models used to describe solute

transport in solution conduits. Although the ADM is

theoretically reasonable, its application to measured BTCs

is often disappointing because of excessively skewed BTC

tails in the measured data that cannot be matched using the

ADM. The skewness is often attributed to strong

exchanges between mobile- and immobile-flow regions

(Toride et al. 1993), solute reactions with aquifer materials

(Svensson and Dreybrodt 1992), or multiple flow paths.

Currently, the ADM and the two-region non-equilibri-

um model (2RNE) are two of the most popular models

used for simulating solute transport in solution conduits

(Toride et al., 1993; Field and Pinsky, 2000; Birk et al.,

2005; Göppert and Goldscheider, 2008; Goldscheider,

2008). The 2RNE is advantageous in that excessive BTC

skewness can be well simulated, but has the disadvantage

of requiring additional parameters that lead to mathemat-
ical complications and possible errors in parameterization

if local minima (as opposed to a global minimum) create a

condition of non-uniqueness during inverse analysis (see,

for example, Moré and Wright, 1993). The likelihood of a

local minimum being encountered increases as the number

of model parameters increases, especially if the initial value

for one or more of the varying parameters is far from the

real value.

The currently favored ADM is actually the solution for

the boundary-value problem in which a zero initial condi-

tion is assumed such that the solute source is a selected

boundary condition. In other words, it is the boundary

condition that drives the BTCs, and that is most applicable

to tracing experiments. In this paper, we first describe a

complete solution that considers the contribution of the
initial condition (similar to that of Toride et al., 1995,

pp. 4–6). Second, we use a conductance-fitting method to

obtain the input history of a dye tracing experiment.
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Finally, we discuss the difference of the ADM and the

2RNE in modeling transport in solution conduits.

ADVECTION-DISPERSION MODELING IN

SOLUTION CONDUITS

PROBLEM FORMULATION

The essential features of solute transport in a solution

conduit may be described using a one-dimensional

advection-dispersion equation (Taylor, 1954), which arises

from mass conservation of the solute, but water exchange

between the solution conduit and the surrounding rock

matrix is neglected. The governing equation of the general

ADM is given as

LC

Lt
zW

LC

Lz
~D

L2C

Lz2
: ð1Þ

Solute concentration is denoted as C. The dispersion

coefficient D can be parameterized with the conduit radius,

a, and solute velocity W as follows (Li et al., 2008),

D~baW , ð2Þ

where the dimensionless dispersion coefficient b is used to

quantify the strength of dispersion. We note that ba is

often referred to as dispersivity.

Because the length of the conduit is invariably finite,

there is an initial condition within the solution conduit

(0ƒzƒL, where L is the downstream position of the

spring),

C(z,0)~CI(z), ð3Þ

and a boundary condition at the sinkhole (z 5 0)

C(0,t)~CB(t): ð4Þ

The general problem consists of Equation (1) subject to

conditions shown in Equations (3) and (4). Because the

mathematical problem is linear with respect to concentra-

tion, we can decompose this general problem of the ADM

into two problems; a boundary-value problem (BVP) and an

initial-value problem (IVP) (Fig. 1). The solution is the

superposition of the two solutions for these two problems.

SOLUTION FOR THE BOUNDARY-VALUE PROBLEM

The boundary-value problem consists of Equations (1)

and (4), with a zero concentration initial condition,

CI(z)~0. The Green’s function for this problem can be

obtained by the Laplace transform, and the solution is

CBVP(z,t)~

ðt
0

CB(t)
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD(t{t)3
q

exp {
z{W (t{t)½ �2

4D(t{t)

( )
dt, ð5Þ

which is equivalent to the solution listed in Table 2 of Kreft

and Zuber (1978) and Table 2.2 of Toride et al. (1995).

Here, t represents the past time, i.e., the time earlier than t.

SOLUTION FOR THE INITIAL-VALUE PROBLEM

The solution for the initial-value problem is a convo-

lution of the initial condition with the associated Green’s

function:

CIVP(z,t)~

ðL
0

CI(f)
1ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp

{(z{Wt{f)2

4Dt

" #(

{

ðt
0

1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp

{(Wtzf)2

4Dt

" #
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD(t{t)3
q

|exp
{ z{W (t{t)½ �2

4D(t{t)

 !
dt

)
df:

ð6Þ

Note that the term inside the big bracket is the Green’s

function for the initial-value problem. Here, f is a variable

denoting the spatial coordinate of the solute-concentration

distribution at t 5 0.

The Green’s function for the initial-value problem in

infinite space can be obtained from the Fourier transform,

which is the first term inside the big bracket. However, this

term causes a positive value at the boundary z 5 0. The

initial-value problem requires a zero value at this location.
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Figure 1. The schematic decomposition of the general

problem of the ADM. The complete solution is a superpo-

sition of the solutions for each subproblem.
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For this reason, a negative value must be prescribed at this

boundary and the contribution of this negative boundary

value must be included, which is the second term inside the

big bracket. This Green’s function (i.e., the term inside the

big bracket) is equivalent to that listed in Table 2.2 of

Toride et al. (1995).

THE COMPLETE SOLUTION

The complete solution of Equation (1), subject to the

initial and boundary conditions imposed by Equations (3)

and (4), respectively is a superposition of solutions (5) and

(6) that is given as

C(z,t)~CBVP(z,t)zCIVP(z,t): ð7Þ

APPLICATION

This section applies Equation (5) for the boundary-

value problem to a tracer experiment conducted at the Lost

River Cave System located in Bowling Green, Kentucky.

Formed in the Ste. Genevieve and St. Louis Limestones of

Middle to Late Mississippian age and developed on top of

the Lost River Chert, the Lost River Cave System begins

with the Lost River flowing directly into the cave entrance.

Lost River then traverses the cave to eventually reemerge

8 km downstream.

Flow along the length of the cave is relatively uniform

along much of its length, but older, higher passages can be

inundated by flood-flow conditions (Crawford, 1986, p. 7).

Blocks of the Lost River Chert routinely detach from cave

walls and line the cave floor as the limestone dissolves

away. The detached chert blocks create minor detention

backwaters containing immobile-flow regions. Undercut

benches and recirculation with scalloped walls also serve as

minor immobile flow regions.

The tracer input is modeled using a typical step-like

function with time. By fitting the theoretical BTC against

the measured BTC, the parameters of the solution conduit

and solute transport, as well as the input history of tracer,

are inverted (Table 1). In our inversion process, the total

mass of dye provides a constraint as follows:

TST~
M

QC0
, ð8Þ

where M is the total mass of dye (476 gram), TST is the

duration of dye input at the sinkhole, C0 is the amplitude

of dye concentration at the tracer release point, and

Q~pa2W is the spring discharge (1.78 m3/s). For the

ADM, the boundary condition at the input point is

assumed to be a step function with time (constrained by

Equation (8)).

The 2RNE is also used to simulate the measured BTC.

Both models (ADM and 2RNE) achieve a good fit against

the measured BTC, as depicted in Fig. 2. The peak of the

BTC modeled from ADM has an error of 2 hours (Fig. 2)

because the ADM cannot adequately simulate the skewness

of the measured BTC. The 2RNE visually appears to a better

fit than the ADM in simulating the falling skewed limb.

Often, the dye release is assumed to be instantaneous (a

Dirac-d source). This assumption is reasonable as a first-

order approximation. However, this assumption mathe-

matically implies an infinite solute-concentration at the

injection moment. To overcome this physical problem, we

include the input history into the ADM, and obtain a

reasonable history of about 10 minutes. This result should

be regarded as the second-order of approximation.

Actually, because this duration is much shorter than the

width of the measured BTC and the amplitude of solute

concentration at the tracer release point C0 (420 mg L21) is

much larger than the maximum amplitude of the measured

BTC at the spring (18.5 mg L21), the continuous input

could be regarded as a Dirac-d source. For this reason a

Dirac-d source assumption often works well. Nevertheless,
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Table 1. The parameters of the simulation example.

Parameter Value Units

Conduit radius, a 2.44 m

Conduit length, L 8.0 km

Flow velocity, W 0.095 m s21

Dimensionless dispersion

coeff., b 7.0 ???

Total mass of dye, M 476 gram

Dye concentration at

sinkhole, C0 420 mg L21

Input duration at sinkhole,

TST 10 min

Time sampling interval 1 min

Figure 2. The theoretical breakthrough curves versus the
measured curve. The initial condition is zero, and for the

ADM, the boundary condition at the sinkhole is assumed to

be a step-like function with time.
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the continuous input is physically more reasonable,

because concentration can never be infinitely large.

DISCUSSION

For the inversion procedure, we use conductance-fitting,

which is an indirect inversion method. Direct inversion may

be thought of as using a negative velocity and a negative

dispersion coefficient to infer the input history directly from

the measured BTC. However, the Green’s function for a

Dirac-d input at the spring does not exist. In a physical

sense, a point source at the spring would be restored to an

input history that never exists. Mathematically, this can be

shown by rewriting Equation (5) to

CBVP(z,t)~CB(t) � GB(z,t), ð9Þ

where * represents convolution. Performing the Laplace

transform with respect to time on Equation (9) yields

CB(p)~
CBVP(z,p)

GB(z,p)
, ð10Þ

and applying an inverse Laplacian transform and convolu-

tion on Equation (10) yields

CB(t)~CBVP(z,t) � LT{1 1

GB(z,p)

� �
, ð11Þ

where LT{1 denotes inverse Laplacian transform. The

inverse Laplacian transform of the reciprocal of GB(z,p)

doesn’t exist. Therefore, we cannot invert for the input

history CB(t) directly from the spring BTC CBVP(z,t), and

the conductance-fitting must be used.

The ADM is often applied to tracer experiments in

karstic aquifers for which the initial condition is zero, but the

boundary condition (history of the tracer solute) at the input

point is not zero. Besides tracing experiments, the ADM is

also applicable to the simulation of transport in which the

boundary condition is zero, but the initial condition is not

zero. Such a situation may be encountered when water

entering a sinkhole or similar input point is tracer free, but

water rich in dissolved solutes (e.g., calcium carbonate)

preexists inside the conduit. Because the initial condition is

often unknown and not measurable, the distribution of

solutes in the solution conduit must be assumed a priori.

Toride et al. (1993) proposed a 2RNE model, to

describe nonequilibrium solute transport with first-order

decay and zero-order production. The ADM model could

be seen as a simplification of their model. The Toride et al.

model dealt with the case in which there is a strong solute

interaction between mobile- and immobile-flow regions or

aquifer kinetic reactions, while our model focuses on the

case in which aquifer kinetic reactions and solute interac-

tion between mobile- and immobile-flow regions are

negligible. Our solution to the ADM may be regarded as

more robust, because it requires fewer parameters, which is

similar to the findings of Göppert and Goldscheider (2008).

In this sense, our model may be more suitable to the

relatively rapid transport conditions that typically occur in

solution conduits, because when solutes are rapidly flushed

and entrained through the solution conduit, only a small

portion of the solute will likely be sequestered in an

immobile-flow region (Li et al., 2008) and probably only

for a very short time. Therefore, the solute interaction

between the mobile- and immobile-flow regions should be

very limited, and our model should behave very well as a

first-order approximation. Nevertheless, the 2RNE model

provides a more accurate tool, because it considers

temporary solute detention in immobile-flow regions. For

this reason, the 2RNE is better for simulating BTCs that

exhibit significant skewness and long tailing phenomena

(see Birk et al., 2005), while the ADM is suitable for

simulating the primary large signals that arrive earlier.

SUMMARY AND CONCLUSION

Transport in a solution conduit is often described by the

advection-dispersion model that is subjected to various

initial and boundary conditions. The general problem is a

superposition of two solutions: one is for the problem

consisting of a boundary condition and a zero initial

condition (Equation (5)), and the other is for the problem

consisting of an initial condition and a zero boundary

condition (Equation (6)).

We used Equation (5) and the breakthrough curve

measured from a dye tracing experiment to invert for the

history of dye injection at the input point. The inverted

parameters are reasonable, which illustrates that the BTCs

can be used to obtain the history of solute injection at input

points. From Figure 2, the breakthrough curve of the

boundary-value problem still exhibits some skewness. In this

sense, the 2RNE is a better model that better replicates the

typically strong skewness and tailing observed in measured

BTCs. It is our contention that the ADM will have important

and profound applications in modeling transport of solutes

that preexist in solution conduits (e.g., dissolved carbonates).
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NOTATION

a conduit radius (m)
C, C(z,t) solute concentration in conduit (g L21)

C0 concentration of dye at sinkhole (g L21)

CB(t) boundary condition at sinkhole (g L21)

CBVP(z,t) solute concentration for the boundary-value

problem (g L21)

CI(t) initial condition within conduit (g L21)

CIVP(z,t) solute concentration for the initial-value prob-

lem (g L21)
D dispersion coefficient (m2 s21)

GB(z,t) Green’s function for the boundary-value prob-

lem with source fixed at t 5 0 (s21)

L conduit length (m)

M total mass of dye (gram)

p Laplacian transform variable (s21)

Q water discharge (m3 s21)

t time (s)
TST input duration of dye at sinkhole,

W flow velocity in conduit (m s21)

z conduit downstream location starting from

sinkhole (m)

b dimensionless dispersion coefficient
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